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Abstract 

Evaluation of immunomodulatory mediators in 

chronic obstructive pulmonary disease and 

cardiovascular disease 

Author: Yuan Sun 

Chronic obstructive pulmonary disease (COPD) and cardiovascular disease (CVD) are among 

the leading causes of mortality and poor health burden in the world. Both COPD and CVD 

often co-exist, due to shared risk factors and common pathophysiological pathways. There is 

an unmet need for effective therapeutics in COPD, given that there has been a paucity of 

therapeutic progress over the last decades and currently very few therapeutics have been proven 

to improve survival in COPD. To this end, addressing cardiovascular risk and evaluating 

cardiovascular therapeutics in people with COPD is an attractive prospect to reduce mortality 

and morbidity in this patient group. Furthermore, there is an urgent need to improve 

understanding of immunomodulatory mediators that may have potential as therapeutics targets 

in both COPD and CVD, and thus health outcomes in COPD and CVD. 

This thesis evaluated two distinct immunomodulatory pathways, which are of interest 

therapeutically in both COPD and CVD. Firstly, the Interleukin-33 (IL-33)/ST2 axis and 

secondly, specialised pro-resolving mediators (SPMs), specifically the specialised pro-

resolving mediator Resolvin D1. Additionally, data pertaining to the anti-platelet drug aspirin 

in people with COPD was evaluated. The reason for this was to evaluate if aspirin may have 

therapeutic benefit in COPD. Given aspirin’s mechanism of actions not only as an anti-

inflammatory anti-platelet therapeutics but also possible enhancement of endogenous 
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production of specialised resolution mediators, it is helpful to evaluate patient level data 

relating to aspirin use and outcomes. 

Firstly, a systematic review and meta-analysis of published human studies of the IL-33/ST2 

axis across the spectrum of human cardiovascular disease was undertaken. The role of IL-33 

in CVD is unclear with both ameliorative and harmful effects reported, and circulating ST2 is 

a biomarker in CVD. The review included 77 studies and 62075 participants. The main findings 

were that incremental increases in circulating ST2 levels were associated with increased risk 

of all-cause mortality and cardiovascular events in populations with cardiovascular disease. IL-

33 levels were found to be lower in heart failure, coronary artery disease and acute coronary 

syndrome patient groups, compared to controls, with the opposite being observed in stroke 

patients. The results of this analysis have been published in PLOS One. 

Secondly, levels of immunomodulatory mediators were measured in serum samples COPD 

patients and controls, specifically the specialised pro-resolving mediator Resolvin D1. 

Specialised pro-resolving mediators (SPMs) are metabolites of polyunsaturated fatty acids and 

are responsible for resolution after acute inflammatory events. There are several families of 

SPMs, including lipoxins, protectins, maresins and resolvins which are derived from different 

polyunsaturated fatty acids and are released at different times during the course of 

inflammation resolution. Of these SPM families, Resolvin D1 has been most extensively 

investigated in COPD pathogenesis and is thought to be dysregulated in COPD. Resolvin D1 

levels were measured using enzyme linked immunosorbent assays in serum samples from 86 

stable COPD patients, 140 COPD patients with recorded exacerbations at baseline and 146 

healthy controls, to evaluate the differences in circulating levels between the groups. Resolvin 

D1 levels were significantly lower in stable COPD patients compared with COPD patients with 

exacerbations at baseline, which suggests potentially dysregulated resolution pathways in 

COPD. The finding that samples from patients who had reported acute exacerbations at 
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baseline had higher Resolvin D1 levels than in stable COPD patients suggests that it plays an 

essential role in the natural resolution of inflammation in COPD.  

Lastly, aspirin use has in some observational studies showed encouraging data that it was 

associated with reduced exacerbation rates. Therefore, work was undertaken to evaluate aspirin 

use at baseline for its association with health outcomes in COPD populations, in a 

comprehensive statistical analysis of two large high quality clinical trial datasets (SUMMIT 

trial n=16485, IMPACT trial n=10355), which included patients with both moderate 

(SUMMIT) and severe COPD (IMPACT) respectively, and those with a history/risk of 

cardiovascular disease (SUMMIT). The patient level data from both trials were obtained and 

patient level analysis performed. The analysis showed that aspirin use was associated with 

increased risk of mortality [SUMMIT hazard ratio 1.15 (1.00-1.33), p=0.048] fully adjusted 

for known and possible confounders, exacerbations and cardiovascular events (including 

myocardial infarction and stroke) over follow up of 52 weeks (IMPACT) and median 1.8 years 

(SUMMIT) respectively. 

In summary, the IL-33 has potential as a therapeutic target and biomarker across the range of 

human cardiovascular disease although further studies with larger sample sizes are needed. 

Whilst IL-33 levels were lower in patients than in controls for several cardiovascular diseases, 

further investigation is needed to explain the contradictory findings in stroke patients. Resolvin 

D1 is dysregulated in stable COPD patients and has potential in future treatment regimens. The 

results of the Resolvin D1 study led to an ongoing clinical study which measures changes in 

patient Resolvin D1 levels over time, following a COPD exacerbation. While previous 

observational studies had suggested aspirin use was associated with reduced mortality risk and 

exacerbations in COPD patients, the findings of this extensive analysis suggest that aspirin use 

is associated with increased mortality risk and exacerbations, and should not presently be 

indicated for treating COPD patients. Future work would include assessing IL-33 and ST2 
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receptor expression in tissue samples from CVD patients which could identify any disruptions 

to this pathway. Additionally, levels of SPMs including resolvins need to be measured in 

COPD patients at set time points after an exacerbation, to identify changes in the trajectory of 

SPM levels. Finally, a randomised control trial of aspirin in COPD patients would be useful to 

evaluate the effect of aspirin use on patient exacerbations and all-cause mortality. 
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Chapter One: Introduction 

1.1 Thesis overview 

In this thesis, several immunomodulatory mediators and the CVD indicated drug aspirin will 

be evaluated for their potential to improve treatment and understanding of CVD and COPD, 

which are two diseases that present a major burden to healthcare systems worldwide (1). 

In Chapter 3, the immunomodulatory mediator IL-33 will be evaluated for its role in human 

CVD, using a systematic review and meta-analysis of published clinical studies measuring 

circulating levels of the mediator in CVD patients and healthy controls. 

In Chapter 4, levels of the immunomodulatory mediators Resolvin D1, developmental 

endothelial locus-1 and Interleukin-17 will be measured using enzyme linked immunosorbent 

assays, in serum sourced from stable COPD patients, COPD patients with recorded 

exacerbations at baseline and healthy controls, to evaluate differences in circulating levels 

between the groups. 

In Chapter 5, the association of aspirin use with health outcomes (risk of all-cause mortality, 

exacerbations and cardiovascular events) in COPD populations will be evaluated using 

statistical analysis of two large high quality datasets sourced from published clinical studies 

(SUMMIT and IMPACT), to identify potentially beneficial effects of aspirin use for COPD 

patients. 

1.2 Cardiovascular disease prevalence and impact 

Cardiovascular disease is an encompassing general term that means disease affecting the heart 

or blood vessels. It includes a spectrum of disorders with different clinical manifestations and 

sequelae, but many of which share the same pathological process of atherosclerosis (2). 
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Historically, CVD primarily afflicted countries with affluent societies (high income countries), 

where people live longer due to better access to healthcare but have a lifestyle that involves 

ready access to fat rich foods, tobacco and transportation that means risk factors of CVD are 

more common. More recently, low and middle income countries where historically the main 

cause of morbidity and mortality were infections, are now significantly more affected by non-

communicable diseases such as CVD, with the prevalence and negative impacts of CVD 

steadily growing over the decades. The Global Burden of Disease study covering 204 countries 

and territories found a total global CVD caseload of 523 million in 2019, compared to 271 

million in 1990 when the study began (3). In addition to the major increase in CVD caseload, 

there was an accompanying rise in CVD deaths (from 12.1 million in 1990 to 18.6 million in 

2019) and years living with disabilities (17.7 million in 1990 and 34.4 million in 2019) (3). 

Closer to home, CVD caused 27% of UK deaths in 2020 (4). In 2022, there were 7.6 million 

people with CVD in the UK, with 64,000 deaths from coronary heart disease, 35,000 deaths 

from stroke and 100,000 hospitalisations due to MI (5, 6). CVD is also responsible for 1.18 

million UK hospital admissions annually and costs the economy £19 billion (7). The human 

and economic costs shown by these statistics make CVD one of the greatest health challenges 

in the UK and across the world. 

1.2.1 Cardiovascular system 

Arteries are vessels of the cardiovascular system that carry oxygenated blood from the heart to 

the body (with pulmonary arteries being an exception). Arteries branch into smaller vessels 

called arterioles which provide blood to the organs (8, 9). The human arterial system is shown 

in Figure 1 below.  
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Figure 1: Human cardiovascular system (made with BioRender) 

 

Due to the high pressure of blood leaving the heart, arteries have thick elastic walls (consisting 

of smooth muscle and elastin) that are capable of withstanding and regulating this pressure (8). 

Arteries have three layers, with the inner most layer (intima) being comprised of an endothelial 

monolayer (endothelium), smooth muscle and elastin. The middle layer (media) is comprised 

of smooth muscle that can regulate blood pressure and the outer layer (adventitia) interacts 

with vascular nerves which direct smooth muscle action (9). The endothelium regulates 
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vascular tone and extravasation of immune cells (movement from vessel into surrounding 

tissues) (10). 

Coronary arteries are divided into the left and right coronary arteries that cover the heart and 

supply it with oxygenated blood (11). The carotid arteries (includes common, external and 

internal carotids) supply the brain with blood (12, 13). Peripheral arteries supply blood to the 

limbs (14).  

1.2.2 Cardiovascular disease pathogenesis 

Plaque build-up can occur inside the arteries which leads to arterial narrowing, in a process 

called atherosclerosis. 

Atherosclerosis begins with endothelial dysfunction (which involves loss of endothelial 

integrity, increased smooth muscle cell proliferation and leukocyte adhesion) due to factors 

such as shear stress from blood flow, hypertension, and smoking, which is then followed by 

accumulation of low density lipoproteins in the intima and smooth muscle of the vessel (15, 

16). These low density lipoproteins accumulate by binding to extracellular matrix proteins 

including proteoglycans such as heparin sulphate, eventually undergoing oxidation (15). These 

oxidized low density lipoproteins are involved in the activation of endothelial cells and 

increases monocyte recruitment which then infiltrate the intima (15). Monocyte recruitment is 

also enhanced by secretion of chemokines such as monocyte chemoattractant protein-1 (by 

cells such as endothelial and immune cells) (15, 17). After differentiating to macrophages (once 

monocytes enter the intima), these monocytes then ingest the oxidized lipoproteins and 

eventually become foam cells which accumulate to form lipid streaks (15). These monocytes 

also release signalling factors (such as tumour necrosis factor) and free radicals that can cause 

further endothelial dysfunction and lipoprotein oxidation (15). Smooth muscle cells then 

migrate to the lumen of the blood vessel wall (triggered by the release of factors including 
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Interleukin-1 and tumour necrosis factor by smooth muscle cells and endothelial cells), forming 

the fibrous cap of the plaque (15). This fibrous cap of smooth muscle cells, monocytes and T 

cells protrudes into the vessel lumen and disrupts blood flow (15). Over time, the plaque grows 

in size as more lipids accumulate and more monocytes are recruited, leading to arterial 

narrowing and impaired blood flow (15, 18). Atherosclerotic plaques present their greatest 

danger when they rupture, caused by destruction of the fibrous cap (due to lysis of the 

extracellular matrix by macrophage proteases) and subsequent exposure of the lipid core of the 

plaque, leading to blood clots forming around this lipid debris and a sudden blockage of blood 

flow in the major arteries (15, 19). These rupture events can also be caused by increased 

systemic inflammation such as during an acute COPD exacerbation, which increases 

thrombotic mediators including Interleukin-6 (IL-6), Interleukin-8 (IL-8) and tumour necrosis 

factor α (TNF-α) (20). Figure 2 below shows plaque build-up in the coronary arteries causing 

a blockage of blood flow. 
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Figure 2: Diagram showing atherosclerotic plaque in coronary arteries and process of 

atherosclerosis (made with BioRender). COPD=Chronic obstructive pulmonary disease 

 

Atherosclerosis in the coronary, carotid and peripheral arteries lead to different manifestations 

of CVD. Rupture of atherosclerotic plaque in the coronary arteries that causes a blockage of 

blood flow is an MI (or heart attack), which results in death of cardiac tissue and a weakened 

heart (21). Similarly, a blockage of the carotid arteries by plaque rupture causes an ischaemic 

stroke that leads to necrosis of brain tissue (22). Peripheral artery disease (PAD, caused by 

plaque formation in the peripheral arteries) typically affects the abdominal aorta, iliac and 

femoral arteries and can be marked by pain and muscle discomfort (14). 

Atherosclerosis and subsequent narrowing of the coronary, carotid and peripheral arteries are 

primarily responsible for the manifestation of cardiovascular disease. 
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1.3 Chronic obstructive pulmonary disease impact 

COPD describes a type of lung disease, primarily characterised by chronic bronchitis 

(inflammation of the airways) and emphysema (destruction of the alveoli). Globally, there were 

approximately 391.9 million cases of COPD in 2019 (in the 30-79 age group) (23). 

Additionally, COPD was the third most common global cause of death in 2019, with 3.23 

million people dying from the disease (24). Whilst less than a quarter of global COPD cases 

are found in high income countries, COPD is still a heavy burden even in those countries, with 

the British Lung Foundation reporting an annual cost of COPD to the UK economy of £1.9 

billion (23, 25).  

1.3.1 Chronic obstructive pulmonary disease pathogenesis 

In the respiratory system, the trachea (windpipe) divides into a left and right bronchus that each 

branch into bronchioles, which branch into alveoli. The alveoli are responsible for gaseous 

exchange in the lungs, delivering oxygen to the vascular system (26).  

COPD disrupts the normal functioning of the respiratory system and is defined by the Global 

Initiative for Chronic Obstructive Lung Disease (GOLD) 2018 as a ‘common, preventable and 

treatable disease that is characterized by persistent respiratory symptoms and airflow limitation 

that is due to airway and/or alveolar abnormalities, usually caused by significant exposure to 

noxious particles or gases’ (27). Figure 3 below shows damaged alveoli in human lungs with 

COPD. 
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Figure 3: Diagram showing alveolar damage in human lungs with COPD (made with 

BioRender). COPD=Chronic obstructive pulmonary disease 

 

COPD typically begins with an insult to the pulmonary system caused by exposure to cigarette 

smoke or air pollution. These trigger inflammatory responses that recruit pro-inflammatory 

neutrophils which can release reactive oxygen species as part of the immune response. The 

oxidative stress in this inflammatory environment promotes elevated protease levels (e.g. 

elastase) and inactivates various anti-proteases (e.g. α-1 antitrypsin) that results in the 

breakdown of alveolar walls and narrowing of the airways (28-30). The incomplete cessation 

of this pro-inflammatory response leads to chronic inflammation resulting in COPD. Bacterial 

or viral infection can trigger an exacerbation, which is an acute worsening of COPD symptoms 

that leads to lower quality of life and increased risk of mortality (31). Although the majority of 

COPD cases are caused by long term smoking or pollutants exposure, a minority of cases 

(approximately 5% of all COPD cases) are caused by a mutation in the SERPINA1 gene that 

leads to a deficiency in the protein α-1 antitrypsin, that is needed to inhibit neutrophil elastase 

(which contributes to the pathogenesis of COPD by breaking down elastin in alveolar walls) 

(32). 
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1.3.2 Comorbidity of cardiovascular disease in chronic obstructive 

pulmonary disease patients 

In addition to being reported together as leading causes of death, CVD is a major comorbidity 

reported in COPD patients. In a meta-analysis of 29 datasets, Chen et al 2015 showed that 

COPD patients are almost two and a half times more likely to have CVD compared to a non-

COPD population (33). Additionally, during up to 3 years follow up, CVD patients with COPD 

were observed to have a higher risk of mortality compared to those without COPD (34). Apart 

from lifestyle factors such as smoking, systemic inflammation (persistent elevated levels of 

inflammatory markers in the blood) is associated with the presence of COPD, particularly 

during exacerbations, and is thought to be a major cause of increased CVD risk. Evidence cited 

to support this theory include the association of COPD with increased carotid intima medial 

thickness, higher levels of circulating inflammatory markers in COPD patients with CVD 

compared to those without CVD and increased risk of MI following exacerbations (1, 35). This 

is potentially caused by increased expression of leukocyte adhesion molecules in endothelial 

cells (due to increased leukocyte extravasation in COPD) which increases risk of 

atherosclerosis, as well as acute inflammation (e.g. exacerbations) causing plaque rupture (1, 

36). However, other factors such as older age causing elastin degradation (via enzymatic 

degradation, calcification and oxidative stress) in the vasculature leading to arterial stiffness 

have also been suggested (1, 37). In particular, age is a major independent risk factor for CVD 

(including hypertension, myocardial infarction and arrhythmia) due to increased oxidative 

stress during the aging process, and while older age is not as significant a risk factor in COPD 

(smoking, air pollution and alpha-1 antitrypsin deficiency are the main risk factors), most 

COPD patients are older, likely due to COPD pathogenesis being triggered by prolonged 

exposure to air pollutants/cigarette smoke over time (38). 
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Moderately effective treatment options for CVD (e.g. beta blockers, ACEIs) and COPD (e.g. 

bronchodilators) exist and are commonly used. However, it is important to identify novel 

treatments for COPD patients who are at risk of, or have been diagnosed with CVD, due to the 

increased risk of mortality in these patients. Furthermore, patients living with CVD or COPD 

are also more vulnerable to other diseases compared with healthy populations, which has been 

clearly highlighted by the COVID-19 pandemic.  

Given the status of CVD as a commonly reported comorbidity of COPD, it is clear that there 

is an unmet need for expanded therapeutic options for COPD patients that are compatible and 

synergistic with underlying CVD and concomitant CVD medications. There are 

immunomodulatory mediators that have potential in the treatment of both COPD and CVD, 

particularly the Interleukin-33 (IL-33)/ST2 axis, the specialised pro-resolving mediator (SPM) 

Resolvin D1 (RvD1). Additionally, the anti-platelet drug aspirin, currently indicated for CVD 

patients, also has promise as a treatment for COPD patients. 

Systemic inflammation underpins the pathogenesis of COPD and CVD and better 

understanding of immunomodulatory mediators that can reduce this inflammation can lead to 

improved treatment regimens. 

1.4 Interleukin-33 signalling axis 

The IL-33/ST2 axis has been implicated in the pathogenesis of both COPD and CVD. 

Within this signalling axis, IL-33 is the ligand and ST2 is the receptor. First discovered in 1989, 

ST2 was designated an orphan receptor until its ligand, IL-33, was identified in 2005 (39). ST2 

occurs in two forms, the transmembrane ST2L form (found in cells such as macrophages, 

cardiomyocytes, T regulatory cells, neutrophils, natural killer cells) which is responsible for 

initiating the cellular effects of IL-33 binding, and the circulating soluble ST2 (sST2) form 

which acts as a decoy receptor to dampen the effects of IL-33 signalling (40). The IL-33 protein 
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is organised into a tertiary structure of 12 β-strands in a β-trefoil fold with 270 residues in total 

(41). In humans, the cytokine IL-33 is constitutively expressed (accumulating in the cell 

nucleus in health and linked with chromatin) by endothelial, epithelial and smooth muscle cells 

of the vasculature, and released (still linked with chromatin) outside the cell after a trigger such 

as cell damage or infection, serving as an alarmin signal (39, 40, 42). Figure 4 below shows 

the process of IL-33 release and binding to its receptor on target cells. 

 

Figure 4: Diagram showing IL-33/ST2 signalling axis. IL-33=Interleukin-33, 

sST2=Soluble ST2, ST2L=Transmembrane ST2, IL-1RAcP=ST2L accessory protein 

 

Due to its strong downstream signalling effects, IL-33 signalling is controlled through several 

mechanisms to dampen its effects. Firstly, being linked to chromatin in the nucleus slows down 

the release of IL-33 outside the cell. Secondly, if IL-33 has been released as part of apoptosis, 

it is cleaved into an inactive form by caspase 3 and caspase 7 (42). Thirdly, once released into 

the extracellular space, IL-33 is rapidly oxidised and inactivated (43). Finally, the decoy 

receptor sST2 can bind to IL-33, preventing it from exerting downstream effects through 

binding to its transmembrane receptor ST2L (44). 
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If IL-33 is not inactivated following release, it will bind to its transmembrane receptor ST2L 

and the accessory protein IL-1RAcP on target cells such as the previously listed immune cells, 

and activate the mitogen-activated protein kinase pathway, allowing it to exert its signalling 

effects (45). 

IL-33 has many wide ranging and significant downstream effects including enhanced human 

mast cell activity (implicated in allergic diseases), longer human eosinophil survival and IL-8 

production (recruits neutrophils) as well as IL-6 production (46-48). 

The IL-33/ST2 axis has been implicated in many diseases, including in tumour development 

where there it appears to have both pro and anti-tumour effects (49). 

1.4.1 Interleukin-33 in chronic obstructive pulmonary disease and 

cardiovascular disease 

In COPD patients, serum IL-33, ST2 and IL-1RAcP levels have been found to be higher than 

in healthy controls and cigarette smoke extract increased expression of IL-33 by peripheral 

blood monocytes and bronchial epithelial cells (50). In a 2019 study, 210 COPD patients and 

180 controls had serum levels of IL-33 measured, with the COPD group having higher levels 

of IL-33 (51). Additionally, IL-33 gene expression was linked to mucin gene expression in 

COPD patients, where mucus hypersecretion is a symptom of COPD (52, 53). Taken together, 

these findings suggest that IL-33 plays a significant harmful role in COPD pathogenesis and 

disease progression. There are several ongoing clinical studies using antibodies to target IL-33 

and its receptor ST2 (54). 

However, in CVD, the role of the IL-33/ST2 signalling axis has been less clear. 

IL-33 prevents cardiomyocyte apoptosis in an in vitro setting and slowed the development of 

atherosclerosis in mice (55, 56). Whilst sST2 is a Food and Drug Administration (FDA) 
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approved prognostic biomarker of mortality for chronic heart failure, and has been studied in 

several CVD including CAD and HF which associated elevated levels with poor prognosis, 

there have been fewer studies focusing on circulating levels of IL-33. Although there have been 

some measurements of IL-33 in MI and HF patients which have inconclusive results or are 

limited by small sample size (57-61). 

IL-33 causes human monocytes to release pro-coagulant microvesicles which suggests 

potential pro-atherosclerotic effects (62). Additionally, an in vitro study showed that IL-33 

enhanced the adhesion of human leukocytes to endothelial cells, and increased expression (on 

a protein and mRNA level) of vascular cell adhesion molecule-1, intracellular adhesion 

molecule-1 and monocyte chemoattractant protein-1 in atherosclerotic plaques ex vivo (63). 

Furthermore, in a 2016 study, 41 atherosclerotic plaques taken from human carotid arteries 

were analysed for ST2L expression, and ST2L was highly expressed on macrophages and more 

so in plaques from symptomatic patients compared to asymptomatic. These findings suggest 

IL-33 signalling could be promoting plaque progression (64). Taken together with the fact that 

in humans, platelets are one of the cell types that constitutively express IL-33, the IL-33/ST2 

axis appears to have a potentially harmful role in CVD, which is contrary to some previous 

findings and are not well supported by studies measuring circulating levels of IL-33 (65). 

Given the importance of the IL-33/ST2 axis in COPD and CVD, the clinical studies targeting 

this axis in COPD, and COPD patients being at higher risk of CVD, it is essential to further 

develop understanding of IL-33/ST2 in CVD, to see if they have the same role as in COPD. 

This will help identify potential contraindications with future COPD medications that target 

the IL-33/ST2 axis. 

Moreover, there have been several published studies measuring IL-33 and sST2 levels in CVD 

patients. However, contradictory findings, small individual study sizes and the heterogeneity 
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of the preceding studies indicate that a systematic review and meta-analysis of the published 

studies is needed, to elucidate differences in IL-33 and sST2 levels in CVD patients and 

controls and identify any associations of the biomarker levels with health outcomes over a 

follow up period. 

1.4.2 Planned wire myography work 

Before the outbreak of COVID-19, the plan was to assess the effects of IL-33 (speculated to 

regulate vascular constriction) on the human vascular system in vitro, using wire myography 

and human resistance and pulmonary vessels sourced from excess surgical tissue (abdominal 

and lung). 

Briefly, we planned to obtain up to 100 resistance vessel samples from excess subcutaneous 

tissue removed during abdominoplasty or breast reconstruction surgery at Cambridge 

University Hospitals NHS Foundation Trust. 30 pulmonary vessel samples were to be sourced 

from lung tissue removed during thoracic surgery at Royal Papworth Hospital tissue bank. 

Samples were to be less than 500 µM in diameter for resistance vessels and 3-5 mm diameter 

for pulmonary vessels. The vessels were to be mounted onto a dual wire myograph system 

(Danish Myo Technology Myo-Interface, model 500A and 610M). Vascular constriction 

would then be assessed after IL-33 treatment. 

The project was approved but not carried out due to the pandemic. 

1.5 Specialised pro-resolving mediators 

Eicosanoids are a large and diverse group of lipid mediators that includes pro-inflammatory 

mediators such as leukotrienes (recruits neutrophils) and thromboxane (promotes platelet 

aggregation) as well as anti-inflammatory mediators such as resolvins and lipoxins, which are 

pro-resolving (66). Eicosanoids primarily signal target cells such as macrophages and 
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neutrophils via G-protein coupled receptors, with effects limited to their area of production 

(66). 

SPMs are a highly important member of the eicosanoid family that is responsible for the natural 

cessation of inflammation after infection or tissue damage. There are many types of SPMs such 

as resolvins, lipoxins, protectins and maresins, all of which are derived from different 

polyunsaturated fatty acids (PUFA) (67). These different SPMs have varying roles during 

sequential phases of inflammation resolution, but all are pro-resolving, with effects including 

inhibition of neutrophil recruitment, reduced production of pro-inflammatory cytokines such 

as IL-6 and IL-8 and decreased levels of reactive oxygen species (68, 69). They are critical to 

the complete cessation of inflammation, the lack of which underpins COPD and CVD 

pathogenesis. Their importance in maintaining a balanced immune response is highlighted by 

their near ubiquitous presence in the body, being identified in tissues ranging from serum to 

breast milk to cerebrospinal fluid (70). Figure 5 below shows the lipid mediator family and the 

PUFAs from which they are derived. 
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Figure 5: Diagram showing the lipid mediator family. Red highlights indicate pro-

inflammatory mediators, Green highlights indicate anti-inflammatory mediators. 

 

1.5.1 Specialised pro-resolving mediator biosynthesis 

SPMs are synthesised via transcellular biosynthesis, which involves one cell producing an 

intermediate stage product before another cell finishes the synthesis. This transcellular 

biosynthesis involves three main pathways of SPM production, the lipoxygenase (LOX), 

cyclooxygenase (COX), cytochrome P450 pathways (66, 67). Depending on the SPM, 

synthesis can take place using only lipoxygenases such as 5-LOX and 12-LOX for lipoxins, or 

it can involve another enzyme such as cytochrome P450 producing the intermediate stage that 

is then finished by 5-LOX (67). Importantly, aspirin can also trigger the production of SPMs 

by acetylating the COX enzymes. Aspirin’s well known anti-platelet effects are due to its 

inhibition of COX-1, which blocks the production of platelet activating thromboxanes. 

However, aspirin also acetylates COX-2, which modifies the enzyme to allow it to produce 
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intermediate stages of SPMs (such as lipoxins and resolvins), which are then completed by 

LOX enzymes. These aspirin triggered SPMs are epimers of natural SPMs and are as effective 

in their pro-resolving actions as well as being longer lasting (70, 71). Figure 6 shows the 

biosynthesis pathways for aspirin triggered resolvins. 

 

Figure 6: Biosynthesis of aspirin triggered resolvins. AT-Resolvins= Aspirin triggered 

resolvins 

 

SPMs are essential for inflammatory resolution and their expression has been found to be 

disrupted in many diseases from chronic conditions such as multiple sclerosis (SPM levels 

decreased and correlated with disease progression) to acute conditions such as COVID-19 

patients with severe acute respiratory syndrome (plasma levels of eicosanoids heavily biased 

towards pro-inflammatory mediators compared to SPMs) (72, 73). 

1.5.2 Specialised pro-resolving mediators in chronic obstructive 

pulmonary disease and cardiovascular disease 

The systemic inflammation present in CVD and COPD suggests the presence of dysregulated 

SPM production pathways in those diseases (74, 75). This is supported by the 2019 finding that 

plasma RvD1 levels were lower in 27 chronic heart failure patients compared to 23 healthy 

controls. This study also reported that T cells treated with exogenous RvD1 were not responsive, 

with production of inflammatory cytokines (TNF-α, Interleukin-17) being unchanged. This 

suggests that in CVD, both production and effectiveness of SPMs are reduced (76). 

Additionally, vulnerable regions of human atherosclerotic plaques sourced from carotid 

endarterectomy were found to have lower levels of RvD1, which suggests a potential 
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association between disrupted SPM expression and increased risk of plaque rupture (77). 

Similarly, COPD patients have lower serum RvD1 levels than controls, and resolvin treated 

macrophages produced lower levels of inflammatory cytokines (IL-6, IL-8) after exposure to 

cigarette smoke extract (78). Furthermore, levels of sputum PUFAs and PUFA metabolites 

were lower in stable COPD patients compared to controls. Interestingly, during acute 

exacerbations, levels of mediators produced by COX-2 were elevated (prostaglandins and 

thromboxanes), which draws further attention to the potential of aspirin in treating COPD via 

modulation of SPMs (79). The findings of these small studies suggest further investigation is 

needed to identify differences in SPM levels in COPD and CVD patients and expand 

understanding of how dysregulated SPM production is associated with disease progression and 

severity. 

Whilst increased dietary intake of PUFAs has been recommended for decades to people at risk 

of CVD, interest in the role of PUFAs and their metabolites in treating COPD is a more recent 

phenomenon. In particular, there are few studies evaluating SPMs in COPD. In the literature, 

RvD1 has been the best represented compared to other SPMs in the study of COPD. 

1.5.3 Resolvin D1 in chronic obstructive pulmonary disease 

RvD1 is a D-series resolvin that is produced from docosahexaenoic acid, that has been shown 

to be expressed at lower levels in COPD patients compared to controls and had protective 

effects in lungs of cigarette smoke exposed mice emphysema models (78, 80). For homeostatic 

functions, RvD1 binds DRV1, and for resolution scenarios, RvD1 effects are exerted through 

G protein coupled receptors which are upregulated during neutrophil activation (81). RvD1 

signalling causes activation of the mitogen-activated protein kinase pathway in target cells, 

leadings to effects such as reduced neutrophil recruitment to inflammatory sites, direction of 

macrophages to an anti-inflammatory phenotype and reducing differentiation of Th17 cells 
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(that produce inflammatory IL-17) (82-84). The reported effects of RvD1 signalling suggests 

it has an important resolution role in COPD and it is important to assess if this pathway is 

dysregulated in COPD and if it is associated with disease severity. 

Current therapeutics for COPD, while effective, are inadequate for tackling the challenge of 

the global COPD burden, as highlighted by the rising caseload, mortality and poor quality of 

life caused by COPD over the decades. In particular, despite the increased risk of developing 

CVD in COPD populations, there are no specific treatment regimens that help these patients 

who are at higher risk of death than other COPD patients. Commonly indicated drugs such as 

bronchodilators may have harmful effects on the cardiovascular system and corticosteroids are 

a blunt tool that increases risk of infection from immunosuppression, which can trigger an acute 

exacerbation that is known to worsen prognosis (31, 85, 86). 

RvD1, as an immunomodulatory mediator, has the potential to promote the natural resolution 

of the systemic inflammation found in COPD and also has an ameliorative role in CVD, making 

them an attractive target for further study. It is important to evaluate differences in the 

expression levels of RvD1 in COPD patients (both stable and unstable) and controls to further 

understanding of the role of RvD1 in COPD pathogenesis and disease progression. 

1.6 Current treatments for chronic obstructive pulmonary 

disease 

COPD patients are encouraged to manage their condition through exercise and therapeutics 

such as bronchodilators and corticosteroids. Bronchodilators are agents which dilate the 

bronchi by targeting smooth muscle, resulting in increased airflow. The three classes of 

bronchodilators are β-2 adrenergic receptor agonists, anti-muscarinic and methylxanthines, 

which are often used in combination treatment with corticosteroids. Corticosteroids have 
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powerful anti-inflammatory effects, which can counter the chronic inflammation associated 

with COPD progression. Bronchodilators and corticosteroids have been found to be effective 

in reducing the symptoms of COPD, with a systematic review of 33 bronchodilator studies 

finding that exercise capacity improved in half of the studies, and a meta-analysis of 

corticosteroid therapy (involving 1331 COPD patients) showing that systemic corticosteroid 

use was associated with successful treatment after exacerbations (87-93). 

Although these therapeutics are effective in treating symptoms of COPD, they are also 

associated with harmful effects, including increased risk of arrhythmias and cardiomyopathy 

in bronchodilator users, while corticosteroid use is associated with increased risk of pneumonia 

(94, 95). 

Although not currently indicated for COPD patients, aspirin has been of increasing interest for 

treating COPD, due to their anti-platelet effects (there is increased platelet activation in COPD 

which increases release of platelet factor 4 that stimulates elastase, causing the breakdown of 

lung elastin) and production of pro-resolving immunomodulatory molecules which can reduce 

lung inflammation (96-98). The status of aspirin as a widely prescribed CVD medication 

further increases interest in its potential for treating COPD, considering the increased 

cardiovascular risk of COPD populations. 

1.7 Aspirin use and chronic obstructive pulmonary disease 

health outcomes 

Current prevention and treatment regimens for COPD centre on lifestyle changes such as 

increased exercise and quitting smoking, as well as therapeutic options such as bronchodilators.  

As previously described, there is a lack of effective COPD medications for patients with CVD, 

despite the elevated risk of CVD in COPD patients. While there remains a strong need for novel 
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therapies, repurposing existing CVD medications that are well studied has the potential to 

quickly improve patient treatment regimens.  

Beta-blockers decrease heart rate and blood pressure by targeting β-adrenoceptors and are 

prescribed to treat conditions such as hypertension, HF and atrial fibrillation (99). There have 

been concerns of potential contraindications of beta-blocker use in COPD patients, but findings 

from a systematic review and meta-analysis of observational studies have suggested that beta-

blockers are well tolerated in COPD patients and are associated with reduced exacerbation and 

mortality rates (100, 101). However, a recent trial of the beta-blocker metoprolol to treat COPD 

patients (532 patients randomised) found that metoprolol had little effect on time to first 

exacerbation compared to the placebo group and the metoprolol group was also more likely to 

be hospitalised after an exacerbation (102). 

Other CVD drug classes have also been investigated for treating COPD, including a clinical 

trial of the statin (decreases cholesterol synthesis by inhibiting HMG-CoA reductase) 

simvastatin in 885 COPD patients, which did not find any effect on exacerbation numbers or 

time to first exacerbation compared to placebo (103, 104). Angiotensin converting enzyme 

inhibitors (inhibits production of the vasoconstrictor angiotensin II) and angiotensin receptor 

blockers (inhibits angiotensin II receptor) are prescribed to treat hypertension (105, 106). A 

small trial of the angiotensin converting enzyme inhibitor enalapril in 21 COPD patients found 

that treatment improved work rate compared to placebo, but a recent trial of the angiotensin 

receptor blocker losartan in 220 COPD patients found that treatment did not stop the 

progression of emphysema compared to placebo (107, 108). Table 1 lists the randomised 

clinical trials of CVD medications in COPD patients. 
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Table 1: Randomised Clinical Trials of CVD drugs to treat COPD patients 

Year Trial Drug Sample Size Population Effects 

1981 Propranolol (β-

blocker) 

13 Non-asthmatic 

COPD 

Propranolol treatment caused 

worse pulmonary function 

compared to placebo (109). 

1986 Atenolol, 

Bisoprolol 

(β-blocker) 

12 Non-asthmatic 

COPD and co-

existing angina 

Atenolol treatment led to 

increased airway resistance 

compared to bisoprolol and 

placebo treatment (110). 

2005 Propranolol, 

metoprolol, 

celiprolol 

(β-blocker) 

15 Mild or 

moderate COPD 

and airway 

hyper-

responsiveness 

Forced expiratory volume 1 

decreased only by 

propranolol treatment 

compared to placebo. 

Metoprolol and propranolol 

treatment increased airway 

hyper-responsiveness. 

Celiprolol had no effect on 

lung function (111). 

2009 Bisoprolol (β-

blocker) 

27 HF and co-

existing 

moderate/severe 

COPD 

Treatment group had 

reduced forced expiratory 

volume 1s compared to 

placebo. Exacerbation 

number similar in both 

treatment and placebo 

groups (112). 

2012 Bisoprolol (β-

blocker) 

27 Moderate or 

severe COPD 

Treatment group associated 

with worse dynamic 

hyperinflation compared to 

placebo (113). 

2019 Metoprolol (β-

blocker) 

532 Moderate and 

severe COPD 

Time to first exacerbation 

similar in treatment and 

placebo groups. Treatment 

group more likely to be 

hospitalised for an 

exacerbation (102). 

2014 Simvastatin 

(statin) 

885 COPD with no 

diabetes or 

cardiovascular 

disease 

Simvastatin treatment did 

not affect exacerbation 

numbers or time to first 

exacerbation compared to 

placebo (103). 

2010 Enalapril 

(angiotensin 

converting 

enzyme 

inhibitor) 

21 COPD without 

cardiovascular 

disease 

Enalapril treatment improved 

work rate compared to 

placebo (107). 

2022 Losartan 

(angiotensin 

receptor 

blocker) 

220 Mild to 

moderate COPD 

Losartan treatment did not 

stop emphysema progression 

compared to placebo (108). 
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1.7.1 Platelets in chronic obstructive pulmonary disease and 

cardiovascular disease 

The anti-platelet class of CVD medications has also been of increasing interest for its potential 

in treating COPD. 

Platelets play an essential role in blood clotting and are needed to stop bleeding. However, they 

are also implicated in CVD, where activated platelets increase the rate of atherosclerosis by 

promoting immune cell recruitment (114). Platelets also form clots around ruptured plaque, 

(which can be triggered by an acute COPD exacerbation) further increasing the risk of an 

ischaemic event (115). Platelet activity has been implicated in the pathogenesis of COPD, with 

higher platelet counts being reported in COPD patients compared to controls and also severe 

COPD patients compared to mild COPD patients (116, 117). Platelets are thought to drive 

COPD pathogenesis and the associated increased CVD risk through several mechanisms, 

including the release of platelet factor 4 which induces elastase breakdown of alveolar elastin 

(causing decreased alveolar wall elasticity), the formation of platelet-monocyte aggregates, 

increased release of thromboxane A2 (promotes platelet aggregation) and synthesis of 

plasminogen activator inhibitor-1 which is associated with thrombosis and reduced lung 

function in COPD patients (98). Considering the important role of platelets in COPD and CVD 

pathogenesis and the elevated risk of CVD in COPD populations, platelets are ideal targets for 

therapies aiming to improve health outcomes in COPD populations. 

1.7.2 Aspirin’s potential in chronic obstructive pulmonary disease 

treatment 

There are many anti-platelet drugs which block platelet activity with different mechanisms of 

action, including clopidogrel which inhibits adenosine diphosphate receptors (needed for 
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platelet activation) and aspirin which irreversibly inhibits the COX-1 and COX-2 enzymes by 

acetylating the serine residue, inhibiting thromboxane A2 production which is needed for 

platelet aggregation (118, 119).  

Aspirin, in particular, is of great interest for its potential as a CVD compatible COPD 

medication, as it is already indicated for CVD patients. Systematic reviews of 15 clinical trials 

found aspirin use reduced the risk of primary atherosclerotic CVD including MI and stroke 

(Risk Ratio: 0.90), although there was also an increased risk of bleeding (Risk Ratio: 1.54) 

(120). Other than its anti-platelet effects, aspirin is known to promote the production of 

immunomodulatory specialised pro-resolving molecules that are essential to the complete 

cessation of inflammation, which can be produced by aspirin modified COX-2 enzymes in 

addition to natural biosynthesis (121). These COX-2 derived SPMs are epimers of naturally 

produced SPMs (67). Given the major role of systemic inflammation in driving COPD and 

CVD pathogenesis, this immunomodulatory capability of aspirin is highly valued. 

Their ready availability, well-tolerated status in CVD and ability to target pathways involved 

in the pathogenesis of CVD and COPD highlights their potential as a treatment to improve 

health outcomes in COPD patients, including those with a history/risk of CVD. 

Whilst there have been no clinical trials of aspirin to treat COPD patients, several observational 

studies have reported a positive association between aspirin use and improved prognosis for 

COPD patients (reduced mortality and exacerbation rate) (122, 123). However, these studies 

made use of heterogeneous studies with varied population demographics, clinical backgrounds, 

disease definitions, follow up time, data collection methods and statistical analysis techniques. 

These limitations highlight the need for a comprehensive evaluation, in large high quality 

datasets, of aspirin use in COPD patients and its association with health outcomes over follow 

up. 
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1.8 Summary 

CVD and COPD affect hundreds of millions of people across the world and are a major cause 

of mortality and decreased quality of life. Despite the availability of diverse therapeutics to 

treat these conditions, the number of cases and deaths from these diseases have only increased 

over the decades. Additionally, existing treatments for COPD and CVD have many drawbacks 

such as the increased risk of pneumonia in corticosteroid users. CVD is a commonly reported 

comorbidity in COPD patients, which complicates treatment options due to potential drug 

contraindications, further increasing the risk of mortality. Therefore, there is a need for novel 

treatments which can effectively treat COPD patients who have CVD or are at risk of CVD. 

Immunomodulatory mediators have great potential in improving the treatment of COPD and 

CVD, as systemic inflammation is the foundation of the pathogenesis of both diseases. 

Identifying mediators that promote resolution of inflammation and help regulate the immune 

response has the potential of providing a more effective and nuanced approach to tackling the 

challenge of CVD and COPD, while avoiding the drawbacks of existing therapies, such as the 

immunosuppressive effects of corticosteroids and the increased risk of arrhythmia for 

bronchodilator users. In this thesis, the following immunomodulatory mediators will be 

evaluated for their potential to improve the treatment and understanding of CVD and COPD: 

IL-33/ST2 and RvD1.  

1.9 Hypotheses 

1. The IL-33/ST2 axis is important in clinical presentations across the range of 

cardiovascular diseases. Soluble ST2 levels are higher in CVD patients than in controls 

and higher levels are associated with poor prognosis. Higher IL-33 levels are associated 

with disease. 
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2. Serum levels of RvD1 and developmental endothelial locus-1 (Del-1) are lower in 

COPD patients compared to healthy controls, while Interleukin-17 (IL-17) levels are 

higher in COPD patients. 

3. Aspirin use is associated with decreased risk of mortality and exacerbations over follow 

up in moderate and severe COPD patients, including those with a risk/history of CVD. 

1.10 Aims 

To address the previously listed hypotheses, statistical and laboratory based studies were 

carried out. First a systematic review and meta-analysis of human IL-33/ST2 studies will be 

carried out to quantitatively assess circulating levels of IL-33 and ST2 in CVD patients and 

controls. Then enzyme linked immunosorbent assays will be used to measure and assess 

differences in the levels of RvD1, Del-1 and IL-17 in frozen serum samples sourced from 

COPD patients and controls. Finally, statistical analysis will be carried out on COPD datasets 

sourced from published clinical trials to assess the association between aspirin use and risk of 

all-cause mortality, exacerbations and cardiovascular composite events. 

 

1. To evaluate the importance of the IL-33/ST2 axis in cardiovascular disease and to 

quantitatively analyse the differences in IL-33/ST2 levels in CVD patients and controls. 

2. To evaluate differences in the serum levels of RvD1, Del-1 and IL-17 in COPD patients 

with exacerbations, stable COPD patients and controls. 

3. To evaluate the association of aspirin use in COPD populations with risk of all-cause 

mortality, exacerbations and cardiovascular composite events over follow up. 
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Chapter Two: Methods 

2.1 Overview 

Here, an overview of the methods and techniques used in this research project are outlined. The 

methods are explained in more detail in the individual experimental chapters. I carried out all 

statistical analysis and laboratory work. 

2.1.1 Datasets used 

For the systematic review and meta-analysis of IL-33/ST2, the designated search terms (IL-

33/Interleukin-33/ST2 combined with one of cardiovascular disease, stroke, myocardial 

infarction, heart failure, coronary disease, ischaemic heart disease and hypertension) were 

entered into each of the following databases: Pubmed, Web of Science, Cochrane Library, 

Prospero. Duplicates were then removed from the search results and primary and secondary 

screening of the abstract and main text (based on inclusion/exclusion criteria) was carried out. 

Only human studies that measured plasma or serum levels of IL-33 or sST2 were included. The 

number of eligible studies was 77. 

For the evaluation of RvD1, Del-1 and IL-17 levels in COPD patients and controls, frozen 

serum samples were selected from manifests from the ERICA (assessed predictive value of 

cardiovascular abnormalities and fibrinogen for health outcomes in COPD patients) and ACCT 

(assessed effect of cardiovascular risk factors on central pulse pressure) studies.  

For the evaluation of aspirin use and health outcomes in COPD populations, the full datasets 

of the SUMMIT (n=16485, moderate COPD with risk/history of CVD defined as CAD, PAD, 

stroke, MI and diabetes with target organ disease, median follow up 1.8 years, published 2016) 

and IMPACT (n=10355, severe COPD, 52 weeks follow up, published 2018) clinical trials 

were used. 
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2.1.2 Data extraction 

For the systematic review and meta-analysis of IL-33/ST2, the eligible studies were scored on 

quality using the Quality Assessment of Diagnostic Accuracy Studies 2 criteria and data 

extraction was guided by the PRISMA statement. The main data extracted were the mean and 

standard deviation of circulating IL-33 and sST2 levels, as well as the hazard ratios and 

confidence intervals. Other data such as adjustment factors for multivariate hazard ratios are 

available in full in Appendix C. 

For the evaluation of RvD1, Del-1 and IL-17 serum levels in COPD patients and controls, 140 

COPD patients with exacerbations at baseline, 86 stable COPD patients and 146 controls were 

selected and matched based on factors including age, gender and body mass index (BMI) from 

the information provided in the manifests of the Evaluating the Role of Inflammation in 

Chronic Airways disease (ERICA) and Anglo-Cardiff Collaborative Trial II (ACCT) studies. 

Sample sizes of each group were limited by the number of available samples. 

For the evaluation of aspirin use and health outcomes in COPD populations, data extracted 

from the SUMMIT and IMPACT studies included demographics, clinical background, 

concomitant medications, trial treatment arm, mortality status, exacerbation status, 

exacerbations number, cardiovascular composite event status. 

2.1.3 Serum analysis 

For the evaluation of RvD1, Del-1 and IL-17 levels in COPD patients and controls, selected 

and matched samples were identified from historic samples stored at -80 degrees Celsius. 

Levels of RvD1, Del-1 and IL-17 were measured using enzyme linked immunosorbent assays 

(ELISAs). An ELISA is a quantitative assay that uses specific antigen-antibody interactions 

linked to enzymes that react with substrates, to produce colour changes that are detected using 

a spectrometer at set wavelengths, from which the concentration of a target molecule in a 
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sample can be calculated (124). Serum samples were thawed and analysed using ELISA kits 

and according to the protocols supplied by the manufacturers. All samples were measured in 

duplicate and plates were read by FLUOstar Omega BMG LABTECH plate readers, at 450nm 

for RvD1, Del-1 and IL-17. The following assays were used: Human Resolvin D1 ELISA kit 

MBS053145 (from MyBioSource.com) for measuring RvD1, R&D Systems Quantikine HS 

ELISA Human IL-17 HS170 for measuring IL-17, R&D Systems DuoSet ELISA Human 

EDIL3 DY6046-05 for measuring Del-1. 

2.1.4 Statistical analysis 

For the systematic review and meta-analysis of IL-33/ST2, the outcomes were weighted pooled 

standardised mean difference of biomarker levels in patients vs controls and weighted pooled 

hazard ratios for risk of all-cause mortality, cardiovascular death and MACE (composite 

endpoint of death or adverse cardiovascular event) in random effects models. Results were 

displayed using forest plots. Heterogeneity and publication bias were assessed using I2 statistics 

and funnel plots respectively.  

For the evaluation of RvD1, Del-1 and IL-17 levels in COPD patients and controls, the median 

and interquartile range were calculated. The differences between the median levels detected in 

the COPD patients and controls were evaluated using Mann-Whitney U tests and associations 

between the groups were evaluated using linear regression. 

For the evaluation of aspirin use and health outcomes in COPD populations, multivariate Cox 

Models were used to calculate hazard ratios for occurrence of all-cause mortality (ACM), 

moderate and severe exacerbations and cardiovascular events. Sensitivity analyses for the 

covariates of age (oldest strata), sex (M/F), race (White) and country (top five sources of 

participants) by carrying out analysis in separate subgroups. Bias analysis was carried out by 

calculating E-values, which identifies the associative strength of potential unmeasured 
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confounders (125). A low E-value would suggest that an unmeasured confounder could 

credibly explain away any observed associations. Propensity score matching was also used to 

create new matched groups of aspirin users and non-users, based on the following covariates 

that predict for being on/off aspirin: history of PAD, stroke, CAD, MI and percutaneous 

coronary intervention in the SUMMIT dataset and history of PAD, stroke, CAD, MI and angina 

in the IMPACT study. Propensity score matching is used to reduce the effect of confounding 

bias in observational studies (126). Hazard ratios for outcomes were then calculated using the 

newly matched groups. 

2.1.5 Software 

Figures 1, 2, 3, 4 and 15 were made using BioRender software. 

Microsoft Excel was used throughout to view the datasets used in this thesis. 

For the systematic review and meta-analysis of IL-33/ST2, the meta-analysis, forest plots, 

heterogeneity assessment and publication bias analysis were carried out using Comprehensive 

Meta-Analysis 3.0 software. 

For the evaluation of RvD1, Del-1 and IL-17 serum levels in COPD patients and controls, 

calculation of median and interquartile range, Mann-Whitney U tests and linear regression 

analyses were carried out using SPSS version 28. 

For the evaluation of aspirin use and health outcomes in COPD populations, data extraction, 

coding and hazard ratios were carried out using RStudio Desktop, R version 4.2.0. The full 

code is available in Appendix A. Hazard ratios were displayed in forest plots made with 

Microsoft Excel. E-values were calculated manually with the method detailed by VanderWeele 

et al 2017 (125).
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Chapter Three: IL-33/ST2 axis in cardiovascular 

disease 

3.1 Background 

3.1.1 Interleukin-33 structure 

IL-33 is a member of the Interleukin-1 family of cytokines that interacts with its receptor ST2 

to play a pivotal role as an alarmin and mediator in the immune response to injury and infection. 

The IL-33 protein is comprised of 270 residues and has a tertiary structure of 12 β-strands in a 

β-trefoil fold (127). IL-33 is constitutively expressed and stored in the nucleus of a range of 

cell types, including vascular endothelial, epithelial, smooth muscle cells as well as immune 

cells (128, 129). The receptor ST2 primarily exists in a transmembrane (ST2L) and soluble 

(sST2) form. IL-33 acts through ST2L binding and sST2 acts as a decoy receptor to dampen 

the effects of IL-33 signalling. ST2L is expressed on immune cells such as macrophages, mast 

cells and Th2 cells (130). Human aortic and coronary vascular endothelial cells are sources of 

sST2, whereas vascular smooth muscle cells do not secrete detectable levels of sST2 (131). 

The release of sST2 is enhanced in cardiac myocytes and lung alveolar epithelial cells after 

signalling by inflammatory cytokines such as TNFα and in mast cells after activation (132, 

133). 

3.1.2 Interleukin-33 storage and release 

IL-33 remains stored in the nucleus in association with chromatin until cellular damage occurs, 

which triggers its release as a chromatin-cytokine complex into the extracellular space (42). 

Following its release, IL-33 can be cleaved by different proteases resulting in different effects. 

For example, caspases 3 and 7 inactivate IL-33 during apoptosis but neutrophil elastase cleaves 
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IL-33 to produce a highly active form during necrosis (42). IL-33 then binds to the 

transmembrane receptor ST2L and its associated protein IL-1RAcP to trigger an intracellular 

signalling cascade that activates the mitogen-activated protein kinase (MAPK) pathway (45). 

The presence of histones increases the strength of the resulting signal (42). 

IL-33 mediates both the innate and adaptive immune response, through autocrine/paracrine 

effects including increased proliferation and cytokine secretion (e.g. IL-4, IL-6, IL-13) in target 

cells expressing ST2L such as macrophages, Th2 and mast cells (41, 134, 135). 

Due to the significant downstream effects, IL-33 signalling is regulated by several mechanisms. 

Firstly, the association of IL-33 with chromatin in the nucleus slows its release into the 

extracellular space (42). Secondly, caspases can inactivate IL-33 after its release and sST2 acts 

as a decoy receptor. Finally, extracellular IL-33 can be inactivated via oxidation of its cysteine 

residues and formation of disulphide bonds (43). 

3.1.3 Interleukin-33 in pathogenesis of chronic obstructive 

pulmonary disease and cardiovascular disease 

IL-33 has been implicated in the pathogenesis of both COPD and CVD in mouse models and 

human clinical studies. 

In mouse models, treatment with anti-IL-33 was protective against cigarette smoke induced 

changes in the lungs, although it should be noted that unlike in humans, mice endothelial cells 

do not constitutively express IL-33 (136, 137). Treatment with IL-33 also caused mice to 

develop pathophysiological changes associated with COPD and induced lung epithelial and 

endothelial cells to produce IL-6 and IL-8, which increased the migration of neutrophils to the 

lungs (54). In clinical studies of COPD patients and controls, there have been some 

contradictory observations, with serum IL-33 levels reported as lower in patients by Tang et al 
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2014 but higher in patients by Xia et al 2015 (50, 138). Additionally, Byer et al 2013 reported 

higher levels of IL-33 mRNA and protein in lung tissue from COPD patients (52). Moreover, 

most evidence points to a harmful role for IL-33 in COPD, and there are already ongoing 

clinical trials targeting the IL-33/ST2 axis in COPD patients (54). 

The IL-33/ST2 axis has also been implicated in the development of CVD. In mouse models, 

endothelial IL-33 was responsible for the systemic inflammatory response after myocardial 

pressure overload (through transverse aortic restriction) but was also shown to reduce the rate 

of atherosclerosis (56, 139). In human genetic studies, single nucleotide polymorphisms (SNPs) 

in the IL-33 gene have been associated with both increased and decreased risk of coronary 

artery disease, suggesting a regulatory role in CVD (140, 141). Interestingly, IL-33 promotes 

leukocyte adhesion to human endothelial cells in vitro which suggests a role in atherosclerosis 

yet serum levels are lower in patients with coronary artery disease compared to controls (135). 

The importance of IL-33 in cardiovascular health remains poorly understood, with contrasting 

data from pre-clinical studies suggesting both cardio-protective and detrimental effects of IL-

33. In contrast, sST2 has been evaluated as a prognostic factor in CVD such as HF and MI and 

is a FDA approved prognostic biomarker of mortality in chronic heart failure patients (57). In 

COPD patients, IL-33 has been targeted with anti-IL-33 and anti-ST2 receptor antibodies in 

ongoing clinical trials to reduce exacerbations (142, 143). In one of these trials involving 343 

COPD patients, the IL-33 targeting monoclonal antibody Itepekimab (compared to placebo) 

improved lung function and decreased exacerbations within COPD patients who were also 

former smokers, although this was not observed for the main population (144). The COPD 

population was a mix of patients with moderate or severe disease and aged 40-75. Patients with 

alpha-1 antitrypsin deficiency and those who experienced an exacerbation 4 weeks before study 

start were excluded. Considering the fact that this drug is already being used to target IL-33 in 

patients and that COPD patients have increased risk of developing CVD, it is essential to 
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improve knowledge of the cardiovascular effects of the IL-33/ST2 signalling axis in clinical 

studies of CVD, to identify potential harmful effects of anti-IL-33 drugs. 

3.1.4 Role of Interleukin-33 signalling in cardiovascular disease 

There have been many clinical studies focused on the IL-33/ST2 axis (primarily studying sST2) 

in CVD. However, the conflicting evidence and heterogeneity of the studies show a need for a 

quantitative review of this axis to determine if IL-33 signalling is cardio-protective or not. 

Previous meta-analyses showed that sST2 is prognostic for all-cause mortality in acute and 

chronic heart failure, CAD and following aortic valve replacement, as well as having 

reasonable diagnostic value for HF (145-150). As far as we are aware, no meta-analysis on 

sST2 covering CVD as a whole has yet been undertaken. There is a paucity of clinical studies 

on IL-33, which is likely due to difficulty measuring it in serum (151). However, in vitro effects 

of IL-33 signalling appears dependent on the cell type targeted, with pro-inflammatory effects 

produced by neutrophils and endothelial cells and anti-inflammatory effects produced by M2 

macrophages (135). 

To my knowledge, no previous meta-analysis has examined the role of IL-33 itself as a 

biomarker in specific CVD nor sST2 and/or IL-33 across CVD as a whole. A systematic review 

and meta-analysis is needed to synthesise and harmonise data from human clinical CVD studies 

to establish the clinical significance of the IL-33/ST2 axis in CVD as a whole and within 

subtypes of CVD. In particular, to determine the importance of IL-33 and/or sST2 levels in 

defining people with CVD versus those without. Also, to determine the association of 

biomarker levels with clinical outcomes of mortality and MACE in CVD or healthy cohort 

populations. 



50 

 

3.2 Hypothesis 

Levels of sST2 are higher in CVD patients compared to controls and higher levels are 

associated with poor prognosis. Levels of IL-33 are higher in CVD patients compared to 

controls. 

3.3 Aims 

To quantitatively evaluate differences in IL-33 and sST2 levels in CVD patients and controls 

and identify any associations with prognosis over follow up, using published clinical studies. 

3.4 Methods 

3.4.1 Study design 

As previously reported, the role of the IL-33/ST2 axis in the human cardiovascular system is 

unclear, with contrasting results from pre-clinical studies. This meta-analysis aimed to 

determine the importance of the IL-33/ST2 axis in the diagnosis and prognosis of human CVD. 

Clinical studies on circulating IL-33 and/or sST2 levels vary in cohort size and quality and 

there is a clear need for a quantitative overview to determine the effects of this axis in CVD 

and healthy populations. A systematic review and meta-analysis was carried out on the role of 

the IL-33/ST2 axis in human CVD, and has been published in PLOS One. I carried out all steps 

of this analysis, including search, data extraction, statistical analysis and data presentation. 

3.4.2 Search strategy 

Before beginning the literature search process, the meta-analysis was first registered on the 

Prospero website (https://www.crd.york.ac.uk/prospero/), which is an international database 

for prospectively registered systematic reviews. The meta-analysis ID is CRD42020168206. 
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Searches in the Pubmed (including MEDLINE), Web of Science, Cochrane Library and 

Prospero databases were carried out up to March 2020. The search terms were one of IL-

33/Interleukin-33/ST2 combined with one of cardiovascular disease, stroke, myocardial 

infarction, heart failure, coronary disease, ischaemic heart disease and hypertension. The same 

search terms were entered into each database. 

During primary screening of the articles, the title and abstract were assessed for relevance to 

the IL-33/ST2 in CVD, English language, full text availability and excluded studies about the 

following: vascular disease localised to renal or hepatic system, vasculitis, autoimmune 

disorders, transplant related diseases, parasite diseases, cancer, HIV, obesity, exercise, 

magnetic resonance imaging. All datasets included in this meta-analysis were in vivo human 

studies that involved measurement of plasma or serum levels of IL-33 or sST2 and a definition 

of CVD or a subtype of CVD (based on clinical diagnosis and/or supporting clinical test of this 

diagnosis). During secondary screening of the full text, the inclusion criteria were: clinical 

studies measuring protein levels of IL-33 and/or ST2 in plasma/serum/blood in CVD 

populations and/or controls, risk of event studies must report hazard ratios calculated using 

continuous and log transformed biomarker levels, study type must be one of patient/control 

comparison or event/no event over follow up comparison or time to first event over follow up 

with hazard ratios, reported biomarker levels at single time points. The exclusion criteria were: 

qualitative studies, studies published before 2000, genetic studies, review papers, animal 

studies, hazard ratios based on quadratic transformed data, time to event studies that reported 

only odds ratios or risk ratios, studies on cardiomyopathy/congenital disease/valve 

disease/pulmonary hypertension/paediatrics, non-extractable raw data such as graphical 

depiction of data only or biomarker levels below detection limits or unable to calculate 

biomarker mean and standard deviation. 
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Studies were undertaken in countries across the world, with China being the largest single 

source. Meta-analyses were performed for CVD versus controls based on CVD search terms 

and incorporated acute coronary syndrome (ACS, including unstable angina and myocardial 

infarction), coronary artery disease (CAD), atrial fibrillation (AF), systemic hypertension, 

acute heart failure (defined as hospital admission with decompensation or new hospital 

diagnosis) or chronic heart failure (CHF). Individual meta-analysis stratified by these distinct 

CVD subtypes were also performed if there were ≥2 eligible studies. The association of IL-33 

and/or sST2 biomarker levels with clinical outcomes of all-cause mortality or MACE were 

evaluated in CVD (and separately within CVD subtypes) as well as community population 

cohorts. Stroke studies were omitted from combined CVD meta-analysis, since stroke 

represents cerebrovascular disease rather than CVD. 

3.4.3 Data extraction and quality assessment 

The PRISMA statement was used as the basis for extracting and recording data from eligible 

articles, the full checklist use is available in Appendix E. Data extracted includes circulating 

biomarker levels and associated standard deviation or confidence intervals, inclusion and 

exclusion criteria of the study, study type, sample size, hazard ratios, follow-up period, age and 

outcomes. Where median biomarker levels and quartile values were reported, they were 

converted to mean and standard deviations with the method reported by Wan et al 2014 to 

enable standardisation across studies (152). Studies reporting data that could not be converted 

to mean and standard deviation were not included in analyses where the outcome was 

standardised mean difference. Full data extracted, including adjustment factors of multivariate 

hazard ratio (HR) analysis are available in Appendix C. Study quality was assessed using a 

modified version of the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) 

criteria. Full criteria used are available in Appendix B. 
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3.4.4 Statistical analysis 

The primary outcomes were weighted pooled standardised mean difference (SMD) of 

biomarker levels comparing cases vs controls (Meta-SMD) and weighted pooled hazard ratios 

(Meta-HR) for occurrence of all-cause mortality, cardiovascular death and MACE during 

follow up calculated using random effects models. Only studies presenting univariate or 

multivariate HRs (risk ratios and odds ratios not accepted) per (log) unit increase in biomarker 

levels were accepted for Meta-HR. 

Data selected for meta-analysis were displayed in forest plots showing the SMDs or HRs of 

individual studies and the overall Meta-value. Heterogeneity was assessed using I2 statistics 

and publication bias was tested for using funnel plots. Where possible, meta-regression was 

carried out to assess the effect of cohort age (mean or median), length of follow up (mean or 

median), publication year and biomarker assay type (Presage ST2 or not). Statistical analysis 

was carried out using Comprehensive Meta-Analysis 3.0 software. 

3.5 Results 

This systematic review and meta-analysis has been published in PLOS One (153). 

The flow diagram summary of the search results is shown in Figure 7. In the literature search, 

4745 articles were found. After duplicates were removed and screening was carried out, all 

studies were systematically reviewed, with 77 studies included (62075 participants) for meta-

analysis and systematic review. The vast majority of included studies assessed subjects 

between 60-80 years old and heart failure was the most reported disease type (47% of studies).  
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Figure 7: Flow chart of search strategy 

 

3.5.1 Interleukin-33 and soluble ST2 levels in cardiovascular 

disease patients versus controls 

3.5.1.1 Interleukin-33 

In analysis of two CAD studies with a total sample size of 156 subjects, patients had lower IL-

33 levels than controls, Meta-SMD of -0.972, 95% CI -1.307-(-0.638); p<0.0001, I2=0.0. 

Additionally, analysis of two HF studies with 281 total subjects showed that patients had lower 

IL-33 levels than controls, Meta-SMD of -0.683, 95% CI -1.213-(-0.153); p=0.012, I2=68.467 



55 

 

(Figure 8). ACS patients also had lower IL-33 levels compared to controls (four studies with 

total sample size of 331), although this did not reach statistical significance: Meta-SMD of -

1.373, 95% CI -2.978-0.231; p=0.093, I2=97.379. 

 

Figure 8: Summary forest plots showing the Meta-SMD and 95% CI of IL-33 levels in 

HF patients and healthy controls. The Meta-SMD in the random effects model is shown by 

the black diamond at the bottom. The vertical line at 0.00 is the border for significance. 

HF=Heart failure 

 

Five studies reported (908 total subjects, sample size ranging from 90-287) IL-33 levels in 

acute ischaemic stroke patients vs controls. Stroke patients had consistently higher IL-33 levels 

than healthy controls [Meta-SMD 1.455, 95% CI 0.372-2.537; p=0.008, I2=97.645] (Figure 9). 

Two studies (449 subjects) showed that stroke patients who had favourable outcomes (Barthel 

Index score above 85 or 90 respectively at 3 months and 1 year after admission respectively) 

had higher baseline IL-33 levels than those who did not: Meta-SMD 0.564, 95% CI 0.356-

0.772; p<0.0001, I2=0.0 (154, 155). 
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Figure 9: Summary forest plots showing the Meta-SMD and 95% CI of IL-33 levels in 

stroke patients and healthy controls. The Meta-SMD in the random effects model is shown 

by the black diamond at the bottom. The vertical line at 0.00 is the border for significance. 

 

There was no difference in IL-33 levels between hypertensive subjects and controls (three 

studies with total sample size of 710): Meta-SMD of -0.024, 95% CI -0.443-0.395; p=0.912, 

I2=81.874. 

There were no clinical studies to evaluate the association of IL-33 with clinical outcomes based 

on the study’s inclusion/exclusion criteria. 

3.5.1.2 Soluble ST2 

Analysis of two CAD studies (408 subjects) showed patients found no difference in levels of 

sST2 between patients and controls: Meta-SMD of 0.033 [95% CI -0.197-0.264; p=0.778, 

I2=16.127]. Only one study across the meta-analysis of all CVD subtypes, Demyanets et al 

2014 in CAD, reported patients having lower sST2 levels than controls (156). Four studies 

with a total of 470 subjects reported that HF patients had higher sST2 levels than controls: 

Meta-SMD of 2.178 [95% CI 0.653-3.704; p=0.005, I2=96.939].  

Meta-analyses of sST2 performed within ACS vs controls (total sample size of 1153) are 

shown below in Figure 10, where ACS patients had higher levels of sST2 compared with 

controls: Meta-SMD of 0.92 [95% CI 0.632-1.208; p<0.0001, I2=77.797]. 
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Figure 10: Summary forest plots showing the Meta-SMD and 95% CI of sST2 levels in 

ACS patients and healthy controls. The Meta-SMD in the random effects model is shown 

by the black diamond at the bottom. The vertical line at 0.00 is the border for significance. 

ACS=Acute coronary syndrome 

 

Acute ischaemic stroke patients also had higher sST2 levels compared to controls, reported 

from two studies with a sample size of 190 and 221, although this did not reach statistical 

significance [Meta-SMD 3.96, 95% CI -0.839-8.760; p=0.106, I2=99.334]. Additionally, AF 

patients also had higher sST2 levels than controls (Figure 11, 704 subjects from three studies): 

Meta-SMD of 2.825 [95% CI 0.607-5.043; p=0.013, I2=99.132]. 

 

Figure 11: Summary forest plots showing the Meta-SMD and 95% CI of sST2 levels in 

AF patients and healthy controls. The Meta-SMD in the random effects model is shown by 

the black diamond at the bottom. The vertical line at 0.00 is the border for significance. 

AF=Atrial fibrillation 
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3.5.2 Association of soluble ST2 levels and clinical outcomes in 

cardiovascular disease and community cohorts 

For CAD, three studies following 4371 patients for up to 12.3 years (median), showed that 

baseline sST2 levels of patients who died during follow up were higher than survivors, Meta-

SMD of 0.502 [95% CI 0.273-0.730; p<0.0001, I2=88.78]. 

Soluble ST2 had a stronger association with risk of all-cause mortality in ACS (Four datasets, 

Meta-multivariate HR 2.207, 95% CI 1.160-4.198; p=0.016, I2=95.661) than risk of all-cause 

mortality in HF (Fifteen datasets, Meta-multivariate HR 1.425, 95% CI 1.268-1.601; p<0.0001, 

I2=92.276). 

Two acute ischaemic stroke studies also evaluated baseline sST2 levels in patients stratified by 

survival status. During 90 days follow up, 132 patients who died had higher baseline sST2 

levels than the 903 who survived [Meta-SMD 1.151, 95% CI 0.670-1.633, p<0.0001, I2=83.474] 

(157, 158). 

Five studies followed 18,264 individuals from community cohorts for up to 15 years (mean) to 

evaluate risk of adverse events (including all-cause mortality, MACE, and occurrence of 

specific CVD, such as development of AF) per log unit increase of sST2 levels (Figure 12). 

The Meta-multivariate HR was 1.035 [95% CI 1.005-1.065; p=0.021, I2=2.114]. However, the 

significance of this finding should take into consideration the fact that several of the individual 

studies have the opposite effect direction or are not statistically significant and the overall effect 

is relatively small at 3.5%. 
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Figure 12: Summary forest plot showing the multivariate Meta-HR and 95% CI for risk 

of any adverse cardiovascular events in community populations and its relation to sST2 

levels. The Meta-HR in the random effects model is shown by the black diamond at the 

bottom. The vertical line at 1 is the border for significance. AF=atrial fibrillation, ACM=all-

cause mortality, CV=cardiovascular, HF=heart failure, CVD=cardiovascular disease, 

CHD=coronary heart disease, MI=myocardial infarction, MACE=major adverse 

cardiovascular events. 

 

3.5.3 Heterogeneity and meta-regression 

Most of the studies had high heterogeneity (I2 value indicates heterogeneity levels, with greater 

than 50% considered high). For studies with high heterogeneity, meta-regression analyses 

(assessing the effect of age, follow up time, publication year and sST2 assay type) did not 

identify covariates that reduced I2 value to below 50% in the vast majority of analyses. 

3.6 Discussion 

This analysis used systematic review methods to evaluate the associations between circulating 

levels of IL-33 and/or sST2 and CVD subtypes, and associations between these biomarkers 

and outcomes of mortality and MACE in CVD patients as well as community populations.  

The main findings were that patients with various forms of CVD have higher sST2 levels 

compared with healthy controls, and that incremental increases in sST2 were associated with 
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poor clinical outcomes of mortality and MACE over several years follow up in both CVD and 

community based cohorts. IL-33 levels were lower in HF, CAD and ACS patients compared 

with controls, but higher in acute ischaemic stroke patients compared with controls. There were 

insufficient data to examine the association of IL-33 with clinical outcomes in CVD or 

community populations.  

This is the first meta-analysis to systematically evaluate both IL-33 and sST2 levels across the 

spectrum of CVD. It suggests that peripheral circulating sST2 measurement may have clinical 

value in differentiating patients with CVD versus controls without CVD. The greatest 

difference in sST2 levels compared with controls was observed in AF and CHF.  

Soluble ST2 is an FDA approved biomarker to evaluate prognosis of mortality in chronic heart 

failure. Previous meta-analyses of sST2 have also been performed in CAD and post-aortic 

valve replacement patients and showed that higher sST2 levels were associated with poor 

clinical outcomes in these populations (145-148). The current meta-analysis found sST2 was 

associated with risk of poor outcomes of mortality, MACE and adverse cardiovascular events 

in a wide definition of CVD patients as well as community populations without identified 

cardiovascular disease. It suggests sST2 may also have value as a risk biomarker in CVD 

patients generally (besides chronic heart failure) and in community cohorts, although notably 

to a lesser extent than in CVD. Despite methodological differences between a meta-analysis by 

Liu et al of ST2 (in ACS and CAD patients only) and this current study, meta-multivariate HRs 

of all-cause mortality in ACS patients are similar, with a respective meta-multivariate HR of 

2.48, (95% CI 1.99-2.97) for Liu et al and HR 2.207, (95% CI 1.160-4.198) in this current 

study (148). 

This is the first meta-analysis of human CVD studies of IL-33 and included 1638 participants. 

It suggests potential clinical value in measurement of IL-33, in that IL-33 levels were lower in 
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CAD, HF and ACS patients versus controls. However, it must be noted other individual studies 

(not included in this meta-analysis after considering inclusion/exclusion criteria) have shown 

different results, with IL-33 levels being higher in some heart failure patients compared with 

controls (159, 160). Interestingly, IL-33 levels were higher in stroke patients compared with 

controls; in contrast to findings from other CVD subtypes, based on five studies with a sample 

size of 908. The reasons for these contrasting results in stroke are unclear and require further 

investigation. Potentially, the unique setting and anatomy of stroke compared to other 

cardiovascular diseases could play a role. The blood brain barrier regulates the movement of 

blood solutes into the brain and is damaged during ischaemic stroke, resulting in increased 

permeability (161). This damage, and the increased movement of solutes, including 

inflammatory molecules, across the barrier could be the cause of the contrasting results in 

stroke compared to other non-cerebral CVD subtypes. Moreover, a major drawback to 

advancing understanding of IL-33 in human cardiovascular health and disease is that often 

levels are below the detection limit of an assay and there is wide divergence in the methodology 

of how studies processed and analysed IL-33 samples in the current published literature (151). 

In this meta-analysis, several IL-33 studies were not included due to levels of IL-33 being 

below the detection limit of the assay (156, 162, 163). A further point of consideration is that 

IL-33 exists extracellularly in both full length and cleaved forms and cleavage may either 

enhance its potency or inactivate it depending on whether serine proteases or apoptotic caspases 

facilitate cleavage. In this meta-analysis, the included studies did not identify whether full 

length or cleaved forms of IL-33 were measured. This is a drawback as neutrophil elastase 

(which cleaves IL-33 and increases its activity) levels are elevated in CVD such as MI (164). 

This meta-analysis showed that circulating IL-33 levels were much lower than sST2 levels, 

which reflects sST2’s role as a decoy receptor to limit IL-33 activity. Moreover, IL-33 exerts 

its effects in an autocrine/paracrine manner, and is quickly oxidised after its release from cells 
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(particularly important considering CVD are marked by elevated oxidative stress), making it 

more difficult to detect in circulation (43, 165). Due to these factors, sST2 is likely a much 

more clinically useful and attainable biomarker to measure in clinical studies as shown by the 

results of this meta-analysis.  

Overall, it remains to be elucidated whether IL-33 itself is cardio-protective or deleterious as 

suggested by contrasting pre-clinical animal studies. There is a need to advance understanding 

of the IL-33/ST2 axis in CVD , and studying local tissue expression of IL-33 and the effects of 

blocking IL-33 or ST2 may be helpful (166, 167). Identifying the role of the IL-33/ST2 axis in 

CVD and COPD has the potential to improve the treatment of both, given its involvement in 

the pathogenesis of both diseases. Additionally, the multitude of downstream effects from IL-

33 activity such as leukocyte activation and recruitment demonstrates the key 

immunomodulatory capabilities of IL-33 and highlights the potential health benefits of 

controlling this signalling axis. Of interest, a loss of function in the IL-33 gene has been shown 

to be protective against asthma in humans, with no harmful effects (i.e. cardiovascular 

abnormalities) reported (168).  

3.6.1 Limitations 

This study has several limitations. The first is the low number of IL-33 clinical studies available 

which limits the conclusions that can be drawn regarding IL-33’s role in cardiovascular health. 

Additionally, differences in the sensitivity of IL-33 assays are a potential hindrance for 

repeatability and interpretation of clinical studies. The second is that Meta-multivariate HRs 

reported are adjusted for different factors at the individual study level that could impact IL-

33/sST2 expression (e.g. age, gender, comorbidities, body mass index, and levels of other 

inflammatory biomarkers). The majority of studies adjusted for age and gender; and many 

included extensive adjustment for other cardiovascular risk factors. Furthermore, the length of 
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storage time for biomarkers before analysis varied, which may impact biomarker stability. 

Finally, causality between biomarker levels and outcomes could not be measured. 

3.6.2 Impact and future work 

The findings of this study are particularly impactful considering the recent clinical trial of the 

monoclonal antibody Itepekimab (targets IL-33) that included 343 COPD patients and showed 

that for COPD patients who are also former smokers, treatment lowered the exacerbation rate 

and improved lung function compared to placebo (144). The results of this meta-analysis 

showing that IL-33 levels are lower in HF, CAD and ACS but higher in stroke patients 

compared to controls are highly important given the existing Itepekimab COPD drug that 

targets IL-33, due to its potential effects on cardiovascular health. This is particularly 

significant considering the status of CVD as a commonly reported comorbidity in COPD 

patients. Any future therapies targeting the IL-33/ST2 axis will have to take into consideration 

the potential downstream effects on the cardiovascular and pulmonary systems, given the high 

position occupied by IL-33 in the immunomodulatory signalling network. 

Future work should include more clinical studies measuring circulating levels of IL-33 in CVD 

patients and controls, to definitively establish any differences in levels. This would inform the 

safety considerations of clinical trials of drugs that target the IL-33 axis. Additionally, any 

future trials of anti-IL-33 drugs should particularly focus on observing cardiovascular health 

throughout the course of the trial. 

3.6.3 Summary 

In summary, this meta-analysis is the first to analyse the role of both IL-33 and sST2 across 

the spectrum of human CVD. The results showed that sST2 has diagnostic and prognostic value 

over several years of follow up across the spectrum of CVD. Similarly, IL-33 shows some 

promise as a biomarker to differentiate between CVD patients and controls. Meta-SMDs 
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showed that IL-33 levels are lower in HF and CAD patients compared to controls, while the 

reverse was observed in stroke patients. This observation and the small sample size means that 

further clinical studies are needed to determine if measurement of circulating IL-33 has 

diagnostic or prognostic value (similar to that of sST2) across the spectrum of CVD subtypes.
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Chapter Four: Evaluation of Resolvin D1 levels in 

COPD patients and controls 

4.1 Background 

4.1.1 Biosynthesis of specialised pro-resolving mediators 

SPMs are metabolites of PUFA such as arachidonic acid, eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA), and are found in many human tissues, including plasma, serum, 

saliva, sputum, breast milk, urine, lymph nodes and spleen (70). SPMs fall into the broad 

category of lipid mediators known as eicosanoids that also includes pro-inflammatory 

mediators such as leukotrienes. There are several known categories of SPMs, including 

lipoxins, protectins, maresins and resolvins that are essential to the resolution of inflammation 

after injury or infection. They are structurally unique (being derived from different PUFAs), 

released at different stages of resolution, and have a range of mainly local downstream pro-

resolution effects, such as decreasing neutrophil migration and activity. SPMs are produced by 

transcellular biosynthesis, via a series of lipoxygenases, where a donor such as an endothelial 

cell synthesises and releases the intermediate component, which is then converted by an 

accessory cell (e.g. adhering leukocytes) into SPMs (67, 169). Figure 13 and Figure 14 show 

the biosynthesis pathways of resolvins, protectins and maresins. 
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Figure 13: Biosynthesis of SPMs derived from arachidonic acid. COX-2= Cyclo-

oxygenase 2, LOX=Lipoxygenase, HETE=Hydroxyeicosatetraenoic acid, AT-

Lipoxins=Aspirin triggered lipoxins 

 

 

Figure 14: Biosynthesis of SPMs derived from DHA. LOX=Lipoxygenase, 

HDHA=Hydroxydocosahexaenoic acid, HpDHA=Hydroperoxydocosahexaenoic acid 
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Microbial infection or injury triggers the release of PUFAs from local cell membranes (by 

phospholipase A2) or are delivered by tissue oedema to the inflammation site (67). Arachidonic 

acid (derived from omega-6) is rapidly metabolised to eicosanoids such as prostaglandins 

(regulates blood flow) and leukotrienes (attracts blood neutrophils), forming the inflammatory 

phase (67). 

The beginning of the resolution phase is marked by the synthesis of lipoxins (also derived from 

arachidonic acid) which act as stop signals for neutrophils, followed by the production of other 

SPMs (67, 70). 

4.1.2 Resolvin D1 in chronic obstructive pulmonary disease 

Of the SPM family, resolvins have been the most extensively investigated for their role in 

COPD. A member of the resolvin family, Resolvin D1 (RvD1), derived from the omega-3 

DHA, has shown promising results in pre-clinical studies that suggest it has an important 

ameliorative role in COPD. In health, RvD1 interacts with the receptor RvD1 receptor (DRV1). 

However, during inflammation, RvD1 signals via the G protein-coupled receptors formyl 

peptide receptor 2 (ALX/FPR2) and G protein-coupled receptor 32 (GPR32) which are 

expressed on the membranes of target cells such as polymorphonuclear leukocytes (e.g. 

neutrophils and eosinophils) and small airway epithelial cells (70, 170-172). This triggers an 

intracellular signalling cascade targeting the MAPK pathway (173). The effects of RvD1 

include blocking neutrophil migration, decreasing neutrophil oxidative bursts and promoting 

neutrophil apoptosis, effects which could be protective against COPD (70, 174). Figure 15 

shows the effects of SPMs in COPD. 
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Figure 15: Effects of SPMs in resolving COPD inflammation (made with BioRender). 

COPD=Chronic obstructive pulmonary disease, CD8=Cluster of differentiation 8, TNF-

alpha=Tumour necrosis factor alpha, IL-6=Interleukin-6, IL-17=Interleukin-17, 

SPMs=Specialised pro-resolving mediators 

 

In murine models with cigarette smoke induced emphysema, RvD1 reduces inflammation by 

promoting the production of anti-inflammatory mediators, M2 macrophage differentiation, 

tissue regeneration and decreased emphysema (80, 175, 176). RvD1 also decreased pro-

inflammatory signalling by human fibroblasts, small airway epithelial cells, blood monocytes 

and alveolar macrophage cells that were exposed to cigarette smoke during in vitro studies (78, 

175). RvD1 also has an inhibitory effect on leukotrienes, which promote neutrophil recruitment 

to the inflammation site, an important mechanism during COPD pathogenesis (177, 178). In 

small clinical studies, COPD patients had lower levels of RvD1 in serum and bronchoalveolar 

lavage fluid (BAL) and have higher receptor expression in lung tissue compared to controls 

(78, 176). These results suggest that RvD1 has a potent anti-inflammatory role in COPD, but 
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further studies measuring levels of RvD1 in COPD patients and controls are needed to 

determine its clinical significance in COPD. 

As previously discussed, therapeutics currently used to treat COPD such as bronchodilators 

and corticosteroids are insufficient in reducing mortality and improving long term quality of 

life. Furthermore, bronchodilators may cause a worsening of CVD (which COPD patients are 

at increased risk of) and corticosteroids have immunosuppressive effects that can lead to viral 

infections, causing an exacerbation (1). There is a particular lack of effective therapeutics in 

preventing or treating exacerbations (usually due to viral/bacterial infection), which are the 

major cause of mortality and reduced quality of life in COPD patients.  

Pre-clinical studies in animals and human tissue have also revealed that treatment with 

resolvins has ameliorative effects for cardiovascular health, including decreased inflammatory 

markers (IL-6, TNF-α, myeloperoxidase) in mouse ischaemia models and reduced human 

vascular smooth muscle cell (VSMC) responses in vitro (implicated in atherosclerosis) (179). 

To be a potential future treatment for COPD patients, it is important that resolvins are 

compatible with cardiovascular health. 

There have not been comprehensive studies comparing levels of SPMs in COPD patients and 

controls. A study measuring serum levels of RvD1 in COPD patients (including stable and 

those with exacerbations) and controls is needed to evaluate the role of SPMs in the 

pathogenesis and severity of COPD, and serve as an exploratory study for future clinical work.  

4.1.3 Interleukin-17 and Del-1 in chronic obstructive pulmonary 

disease 

In addition to RvD1, two further immunomodulatory molecules were of interest: IL-17 and 

Del-1. IL-17 is a pro-inflammatory cytokine primarily produced by T-helper 17 cells and has 
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been associated with the development of COPD through neutrophil recruitment (180). Del-1 

(also known as EDIL3) is released by endothelial cells and blocks the adhesion of leukocytes 

to the vascular endothelium by inhibiting the interaction of leukocyte LFA-1 integrin with 

endothelial ICAM-1, resulting in reduced neutrophil migration (181). The measurement of Del-

1 in COPD patients is very exploratory work. 

Serum levels of IL-17 and Del-1 in COPD patients and controls are of interest, due to their 

relationship to each other and RvD1. In humans and mice, IL-17 and Del-1 expression is 

inversely related, with IL-17 inhibiting Del-1 expression. However, RvD1 can reverse this 

inhibitory effect of IL-17, while Del-1 is known to promote the production of resolvins, 

forming a positive feedback loop (182, 183). Previous studies have separately measured serum 

levels of IL-17 in COPD patients and controls, but not Del-1, and not all three molecules from 

the same population (184, 185).  

A study measuring serum levels of RvD1, IL-17 and Del-1 in stable COPD patients and those 

with exacerbations is needed, to evaluate the role of these immunomodulatory molecules in 

COPD pathogenesis and during acute exacerbations. Levels of the immunomodulatory 

mediators will also be measured in controls to identify the baseline expression levels. 

4.2 Hypothesis 

Levels of serum RvD1 and Del-1 are lower in COPD patients than in controls and IL-17 levels 

are higher in COPD patients. 

4.3 Aims 

Measure levels of RvD1, Del-1 and IL-17 in serum sourced from COPD patients with 

exacerbations, stable COPD patients and controls. 
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4.4 Methods 

4.4.1 Study design 

Results from pre-clinical studies suggest RvD1 may have an immunomodulatory role in COPD 

pathogenesis. However, there is a paucity of studies measuring the levels of RvD1 in human 

COPD patients and controls. Additionally, there have been no studies comparing levels of 

RvD1 in stable COPD patients vs those with exacerbations. Identifying differences in the levels 

of RvD1 in COPD patients and controls would shed light on the potential ameliorative role of 

RvD1 in lung disease. Measurement of RvD1, IL-17 and Del-1 levels in frozen serum sourced 

from COPD patients and controls were carried out using ELISAs. I carried out all laboratory 

work, statistical analysis and data presentation. 

4.4.2 Sourcing of samples 

Frozen serum samples from COPD patients and healthy controls were sourced from the ERICA 

and ACCT studies respectively, with ethically approved storage (186, 187). 

Briefly, the ERICA study published in 2014 investigated the predictive value of plasma 

fibrinogen and cardiovascular abnormalities for mortality or hospitalisation in 800 COPD 

patients (186). The ACCT study published in 2008 (study extended beyond publication) 

investigated the influence of cardiovascular risk factors on central pulse pressure in 10613 

diabetics, CVD patients, subjects with one of hypertension/hypercholesterolemia/smoking and 

healthy individuals (187). 

4.4.3 Measurement of serum Resolvin D1, Interleukin-17, Del-1 

From the manifests of the ERICA and ACCT studies, 140 COPD patients with exacerbations 

at baseline, 86 stable COPD patients (no exacerbations at baseline) and 146 controls were 

selected and matched based on age, gender and BMI. Additionally, all controls selected had 
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FEV1% above 70 which is the minimum boundary of the normal range. All serum samples 

were located in -80 degrees Celsius freezers before measurement. 

Serum levels of RvD1 (Human Resolvin D1 ELISA kit, MBS053145, MyBioSource.com), IL-

17 (R&D Systems Quantikine HS ELISA Human IL-17, HS170) and Del-1 (R&D Systems 

DuoSet ELISA Human EDIL3, DY6046-05) were measured in duplicate, using ELISA kits 

according to the manufacturer’s protocols. Readings of plates were carried out using the 

FLUOstar Omega BMG LABTECH plate reader. 

4.4.4 Statistical analysis 

Median biomarker levels in COPD patients with baseline exacerbations, stable COPD patients 

and controls were compared between groups with non-parametric Mann-Whitney U tests to 

assess differences in expression levels. The data were Log10 transformed due to non-normal 

distribution, then linear regression was used to assess for any associations between biomarker 

levels in the study groups. Bland-Altman analysis was carried out to assess the repeatability of 

the ELISA results. All statistical analyses were carried out using SPSS version 28. 

4.5 Results 

I used ELISAs to measure RvD1, Del-1 and IL-17 levels in 372 unique serum samples from 

unstable COPD patients with baseline exacerbations, stable COPD and controls, with different 

sample sizes across the groups due to differences in available samples and some measurements 

being unreadable (Table 2). Samples in stable and unstable groups were matched based on age, 

BMI and sex. Independent t-tests showed that the groups were well matched on age and BMI, 

with no significant difference in the means between the groups (for mean age: p=0.446, for 

mean BMI: p=0.343). 
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Table 2: Demographics of COPD patients and controls in ELISA study 

 Unstable COPD Stable COPD Controls 

Sample Size 140 86 146 

Mean Age (years) ±SD 67±7 68±7 67±8 

Sex (% male) 68 74 51 

Mean BMI (kg/m2) ±SD 26±6 27±5 27±4 

Current smoker (%) 32 44 3 

Mean FEV1 (%) ±SD 44±16 56±14 105±13 

 

The median and interquartile range (IQR) of serum levels of RvD1, Del-1 and IL-17 in COPD 

patients and controls are shown below in Table 3. To assess statistically significant differences 

in biomarker levels across groups, the non-parametric Mann-Whitney U test was used to 

compare median biomarker values between groups, due to non-normal distribution of the data. 

 

Table 3: Median (IQR) levels of RvD1, Del-1 and IL-17 in study groups 

 Unstable COPD Stable COPD Controls 

RvD1 (pg/ml) 143.25 

(Q1: 88.99, Q3: 

222.55) 

109.04 

 

(Q1: 76.41, Q3: 

195.72) 

139.96  

 

(Q1: 84.05, Q3: 

205.29) 

Del-1 (pg/ml) 11.94  

 

(Q1: 3.28, Q3: 

28.94) 

7.24  

 

(Q1: 0.00, Q3: 

20.71) 

15.03  

 

(Q1: 7.11, Q3: 

149.21) 

IL-17 (pg/ml) 0.15  

 

(Q1: 0.091, Q3: 

0.206) 

0.13  

 

(Q1: 0.082, Q3: 

0.18) 

0.08  

 

(Q1: 0.032, Q3: 

0.14) 
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4.5.1 Resolvin D1 

Median RvD1 levels in 140 COPD patients with exacerbations were highest at 143.25 pg/ml, 

compared to 139.96 pg/ml for 146 controls and 109.04 pg/ml for 86 stable COPD patients 

(Figure 16). The difference in RvD1 levels between COPD patients with exacerbations and 

stable COPD patients was statistically significant (p=0.042). There was no significant 

difference (p>0.05) between exacerbators vs controls, stable COPD vs controls or combined 

COPD (exacerbators and stable) vs controls. 

 

Figure 16: Box and Whisker Plot showing median RvD1 levels in COPD exacerbators 

and stable COPD. Outlier is any value more than 1.5 x IQR above quartile 3 or 1.5 x IQR 

less than quartile 1. Star=Extreme outlier, Circle=Outlier.  
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4.5.2 Del-1 

Median Del-1 levels in healthy controls were highest at 15.03 pg/ml (n=101), followed by 

11.94 pg/ml for 123 exacerbators and 7.24 pg/ml for 69 stable COPD patients. The difference 

between stable COPD and healthy controls was significant (p<0.001). There was no significant 

difference (p>0.05) between exacerbators vs controls, exacerbators vs stable or combined 

COPD (exacerbators and stable) vs controls. There was a large spread in recorded Del-1 values, 

shown in Figure 17.  

 

Figure 17: Box and Whisker Plot showing median Del-1 levels in COPD exacerbators 

and stable COPD. Outlier is any value more than 1.5 x IQR above quartile 3 or 1.5 x IQR 

less than quartile 1. Star=Extreme outlier, Circle=Outlier. 
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4.5.3 Interleukin-17 

Median IL-17 levels were 0.15 pg/ml in 45 exacerbators, 0.13 pg/ml in 44 stable COPD patients 

and 0.08 pg/ml in 90 healthy controls. However, these measurements were clearly too low to 

be of statistical value, as the high sensitivity assay used (R&D Systems Quantikine HS ELISA 

Human IL-17, HS170) had a detection range of 0.2 – 15 pg/ml. The assays were carried out 

according to the manufacturer’s instructions and the reasons for the abnormally low levels of 

IL-17 across the groups are currently unknown. 

4.5.4 Regression analyses 

Regression analyses were undertaken to evaluate the relationship between RvD1/Del-1 levels 

and RvD1/CRP (C-reactive protein, biomarker for cardiovascular injury) levels. Due to non-

normal distributions, the data was first Log10 transformed before linear regression was carried 

out. 

The relationship between RvD1 and Del-1 levels was expected to be positive as RvD1 can 

reverse the inhibitory effect of IL-17 on Del-1 expression and Del-1 is known to promote the 

production of resolvins (182, 188). However, regression analyses found no statistically 

significant relationship between RvD1 and Del-1 across any of the groups (exacerbators, stable, 

controls, combined COPD). 

Regression analysis was also carried out to examine the relationship between RvD1 and CRP 

(biomarker for inflammation and cardiovascular injury) levels. There were no statistically 

significant relationships between RvD1 and CRP levels in exacerbators, stable or controls. 

However, in the combined COPD group (exacerbators and stable), there was a significant 

positive relationship between RvD1 and CRP: [Log10 RvD1= 2.055 + 0.111 (Log10 CRP), 

p=0.007]. This means that for every unit increase in Log10 CRP, Log10 RvD1 increases by 

0.111. 
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Bland-Altman analysis (plots shown in Appendix F) was carried out for measurements of RvD1 

and Del-1. For RvD1 measurements, the null hypothesis that the mean difference (-0.274) 

between measurements of the same sample was 0 remained intact (p=0.111), suggesting there 

was no proportional bias and high level of agreement between the measurements. For Del-1, 

the null hypothesis was rejected (mean difference 0.573, p<0.001), indicating the presence of 

proportional bias and different results between measurements of the same samples. 

4.6 Discussion 

ELISAs were used to measure levels of RvD1, Del-1 and IL-17 in 372 serum samples from 

COPD patients (exacerbators and stable) and healthy controls, to evaluate the role of SPMs and 

other immunomodulatory mediators in COPD pathogenesis and severity. This is the first study 

to measure RvD1, Del-1 and IL-17 in the same human COPD serum samples. 

The main findings were that median RvD1 levels were highest in exacerbators, followed by 

healthy controls, with stable COPD having the lowest levels. A previous small study (n=11) 

found lower serum RvD1 levels in stable COPD patients compared to controls, which supports 

the findings in this study (78). However, only the difference in RvD1 levels between 

exacerbators and stable COPD was statistically significant. For Del-1, controls had the highest 

levels, followed by exacerbators and stable COPD had the lowest levels. Only the difference 

in Del-1 levels between stable COPD and controls was statistically significant. Median IL-17 

levels were below the assay range in all groups so could not be included for meaningful analysis. 

As previously explained, exacerbations are the major cause of mortality and reduced quality of 

life in COPD patients, often by aggravating underlying CVD conditions, which increases stress 

on the cardiovascular system and causes events such as plaque rupture. Currently, there is a 

lack of effective therapeutics for treating or preventing exacerbations, with steroidal options 

having major disadvantages, as previously noted. The results of this study showed that RvD1 
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levels were highest in exacerbators, suggesting that SPM levels are upregulated after an acute 

inflammatory event. This suggests that RvD1 upregulation is part of a natural resolution 

response to exacerbations and highlights its potential as a well-tolerated treatment for these 

acute inflammatory events. SPMs are an anti-inflammatory member of the broader eicosanoid 

mediator family and pro-inflammatory eicosanoids have already been explored as drug targets 

for lung disease, with anti-leukotrienes such as Montelukast being shown to successfully 

decrease exacerbations in asthma patients (189).  

While RvD1 and Del-1 were speculated to have a positive relationship, regression analysis did 

not find a significant relationship between RvD1 and Del-1 levels. However, regression 

analysis revealed a positive relationship between RvD1 and CRP (a biomarker for 

cardiovascular injury) in the combined COPD (exacerbators and stable) group. This further 

suggests that RvD1 is upregulated in response to acute inflammation. 

Interestingly, other studies assessing SPM levels in lung disease found that lower SPM levels 

were associated with more severe disease. A 2021 study in Covid-19 patients (n=38) showed 

that plasma levels of anti-inflammatory SPMs (including RvD1) were decreased in more 

severely ill patients, and higher SPM levels were associated with survival (190). Similarly, a 

study of 32 asthma patients revealed lipoxin levels in whole blood were lowest in severe asthma 

patients compared to moderate asthma, suggesting a defective lipoxin biosynthesis pathway in 

more severe disease (191). This contradicts the findings of this study that COPD patients with 

more severe disease (exacerbations) had the highest RvD1 levels, and needs to be further 

explored. 

Due to time and monetary constraints, in this ELISA study, RvD1 was the only SPM measured. 

Further measurements of the full range of SPMs (including lipoxins, protectins, maresins) in 

COPD patients and analysis of their trajectory at different time points after an exacerbation are 
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needed to fully elucidate the clinical significance of SPMs in COPD and their potential as a 

novel treatment for preventing and treating exacerbations. To meet these objectives and to build 

on the findings of this study, the ongoing Resolution Mediators in Chronic Lung Disease 

(RESCUE) study is using mass spectrometry for lipid mediator profiling in fresh plasma 

samples taken from 24 COPD patients (12 exacerbators and 12 stable) and 12 controls at set 

time points, to track changes in SPM levels over time and after exacerbations. 

While acute inflammation could lead to an increase in RvD1 levels, the finding that median 

RvD1 levels were lowest in stable COPD patients suggests that chronic inflammation could be 

the cause of disrupted SPM production. Unresolved inflammation leading to dysregulation of 

SPM production pathways is supported by results from a study showing that high doses of 

omega-3 supplements for patients with atherosclerosis and Type 2 diabetes increased serum 

DHA/EPA but did not influence levels of RvD1 or inflammatory markers (192). This suggests 

that omega-3 supplementation alone is not sufficient for treating disease, as patients with 

inflammatory diseases may have altered SPM production pathways, with reduced levels of 

potent SPM end products. It was found that sputum levels of arachidonic acid (derived from 

omega-6 and precursor for pro-inflammatory leukotrienes and anti-inflammatory lipoxins) 

were higher in COPD exacerbators compared to stable patients (79). Additionally, sputum 

levels of EPA (derived from omega-3) were lower in stable COPD patients compared to 

controls. These findings further suggest that SPM production pathways and PUFA metabolism 

in general are altered in COPD pathogenesis. To further explore this, the Effects of Aspirin on 

Specialised Pro-Resolving Mediators (ASPIRE) study will be launched to examine the effects 

of omega-3 and aspirin supplementation on plasma SPM levels and lung/cardiovascular 

function, in randomised groups of 24 COPD patients and 24 controls.  

The finding that Del-1 levels were highest in controls suggests that Del-1 is highly expressed 

in health and plays an important role in regulating inflammation. These results showing that 
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Del-1 levels were lowest in stable COPD patients further suggests that chronic inflammation 

has a negative effect on the production of anti-inflammatory mediators like Del-1. The recorded 

biomarker levels recorded were highly variable, with a very large spread in exacerbators, stable 

COPD and healthy controls. The large range of values in all groups suggests that Del-1 levels 

are highly variable across individuals and could be influenced by factors that were unaccounted 

for in this study.  

The findings of this study are supported by a recent ELISA study (with similar age and gender 

ratios to the samples used in this study) measuring plasma levels of Del-1 in 438 COPD patients 

and 99 controls (46 smokers, 53 never smoked). The study by Joo et al showed that COPD 

patients had significantly lower mean plasma levels of Del-1 than controls (385.9±523 pg/ml 

vs 535.4±903 pg/ml). The study also found that lower plasma levels of Del-1 was associated 

with increased risk of exacerbations (193). These results are in line with the findings of this 

study that controls have higher Del-1 levels than COPD patients and their reported standard 

errors for the mean values also suggest high variability in Del-1 expression.  

While IL-17 is known to have an inverse relationship with Del-1 in humans and mice, it was 

not possible to examine this relationship due to measured IL-17 levels in all samples being 

below the assay range. While serum IL-17 levels were not measured successfully in these 

samples, IL-17 serum levels in COPD patients have been evaluated in prior studies, with 

exacerbators reporting the highest levels, followed by stable COPD patients, and controls had 

the lowest levels (184, 185). 

4.6.1 Limitations 

Much higher levels of Del-1 (more than 20 fold higher) were reported in COPD patients and 

controls by Joo et al compared to my results, suggesting that assay type and sample quality 
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may have influenced my findings, and further investigation is needed to identify the causes of 

these differences. 

Additionally, this study is limited by the fact that RvD1, Del-1 and IL-17 levels were measured 

in COPD exacerbators at a single time point. In the ERICA study, all COPD exacerbators were 

stable at least 4 weeks before study start, so the levels of RvD1, Del-1 and IL-17 measured in 

the serum samples were reflective of patients already in recovery, potentially minimising 

observed differences with stable COPD samples. 

While the demographics of stable and unstable COPD patients were matched well, stable 

COPD patients had a significantly higher proportion of current smokers, which could explain 

the lower levels of RvD1 reported in that group. 

4.6.2 Impact and future work 

There are many further areas to be explored in evaluating the potential of SPMs as a novel 

treatment for COPD exacerbations and improving understanding of their role during 

inflammation resolution. 

The finding that RvD1 levels were significantly lower in stable COPD patients compared to 

those with exacerbations suggests an important role for RvD1 in COPD pathogenesis and 

resolution of inflammation after an exacerbation. Considering that COPD exacerbator samples 

were taken from patients who were stable for at least 4 weeks, it is important to carry out a 

clinical study measuring SPM levels in COPD patients at different time points after an 

exacerbation, to track their trajectory during the recovery stage. I am currently investigating 

this in the ongoing RESCUE study which is measuring SPM levels in stable COPD, COPD 

exacerbators and controls at set time points. 

Importantly, SPM production may be a key mechanism for commonly used cardiovascular 

drugs to exert their effects, with aspirin and statins both producing epimers of SPMs that are 
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as potent as and more stable than naturally produced SPMs (70). The ASPIRE study will 

investigate this area further by measuring changes in SPM levels in COPD patients/smokers 

and controls who have been given omega-3 supplements and aspirin vs placebo. 

Considering the primarily local activity of SPMs, measuring receptor expression in lung tissues 

may be more representative of SPM activity than systemic circulating levels. This would build 

on findings from a small study showing increased ALX/FPR2 expression in COPD lungs 

compared to controls (176).  

One of the major advantages of SPMs as a novel treatment for COPD is their 

immunomodulatory effects (including clearance of pathogens), which is in contrast to the 

immunosuppressive effects of the current steroidal options, that can lead to pulmonary 

infections in vulnerable COPD patients. However, considering that the inflammatory phase is 

critical for clearing pathogens, ending this inflammation prematurely via SPM treatment could 

have harmful effects on health. A previous study using mouse pneumosepsis models showed 

that early treatment with Lipoxin A4 was associated with worse infections and later treatment 

was associated with better survival (194). Further understanding of potential 

immunosuppressive side effects of SPMs are particularly important for treating COPD patients, 

due to their vulnerability to lung infections.  

4.6.3 Summary 

In summary, this is the first ELISA study to measure RvD1, Del-1 and IL-17 in the same human 

COPD serum samples. RvD1 and Del-1 were shown to be significantly decreased in stable 

COPD patients, suggesting that production pathways for mediators important to inflammation 

resolution are dysregulated in chronic inflammatory disease.  

The findings also showed that an acute exacerbation at baseline is associated with a spike in 

RvD1 levels, suggesting a pivotal role for these SPMs in the natural resolution of inflammation 
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in COPD. However, it was not possible to carry out meaningful analysis of IL-17 levels and 

their relationship to RvD1/Del-1 due to measurements being below the assay range. These 

findings laid the groundwork for the ongoing RESCUE study to assess the full range of SPMs 

in COPD patients and their trajectories in the days and weeks following an exacerbation.
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Chapter Five: Aspirin use and health outcomes in 

COPD populations 

5.1 Background 

5.1.1 Aspirin for chronic obstructive pulmonary disease treatment 

COPD patients are at disproportionate risk of CVD but often do not receive the same treatments 

as patients with CVD alone (1, 195). This is a major problem as an exacerbation in COPD 

patients can cause or worsen underlying CVD and increase risk of mortality. Existing 

treatments for COPD exacerbations such as corticosteroids and beta-agonists are inadequate 

for reducing mortality from CVD and improving quality of life. Therefore, it is essential that 

treatment regimens for COPD are developed that are compatible with underlying CVD.  

One promising avenue of treatment is the repurposing of existing CVD drugs to treat COPD, 

which may have ameliorative effects on exacerbations and survival in COPD patients, in 

addition to their beneficial effects for cardiovascular health. Aspirin is one such CVD drug that 

is widely prescribed and cheaply available. It is an anti-platelet that irreversibly inhibits the 

COX enzymes by acetylating the serine residue, which prevents thromboxane A2 (promotes 

platelet aggregation) production in platelets (119). Aspirin is also known to promote the 

production of epimers of SPMs that have been shown to have anti-inflammatory effects in 

COPD and CVD animal models, as well as human in vitro studies (176, 196, 197). Furthermore, 

stable COPD patients have been shown to have elevated platelet levels compared to controls, 

which increase further during an exacerbation, which could be the cause of increased risk of 

CVD in COPD populations (117). The anti-platelet properties of aspirin suggests a potential to 

target this pathway.  
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5.1.2 Data analysis of aspirin and chronic obstructive pulmonary 

disease outcomes 

While there have been no randomised control trials of aspirin for COPD treatment, previous 

observational studies of COPD patients have found that aspirin use was associated with fewer 

exacerbations, slower disease progression and lower mortality after exacerbations (122, 123, 

198, 199). 

However, these observational studies vary greatly in data quality and collection methods, 

follow up time and cohort demographics. There are large, high quality datasets available from 

published clinical trials involving thousands of COPD patients, which provide a wealth of 

information such as concomitant medications and CVD history/risk. These datasets are highly 

valued for their clear and consistent data entry and detailed records on the large populations of 

COPD patients involved, which can provide insights into the relationship between aspirin and 

outcomes such as risk of mortality and exacerbations. 

COPD and CVD are still major causes of mortality and reduced quality of life worldwide, and 

constitute heavy economic burdens to health systems. While there is a need for novel drugs, 

the long development process for new therapeutics suggests that it is prudent to identify 

commonly used drugs such as aspirin that can be repurposed for treating COPD and are 

compatible with underlying CVD. 

Taking into account previous reports of the beneficial effects of aspirin in COPD, there is a 

need to comprehensively investigate, using large high quality datasets, the potential of aspirin 

for reducing the risk of exacerbations and all-cause mortality in COPD patients with varying 

severity of disease and with a history/risk of CVD. 
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5.2 Hypothesis 

Aspirin use is associated with decreased risk of mortality and exacerbations over follow up in 

COPD patients from the SUMMIT and IMPACT trials. 

5.3 Aims 

Evaluating the association of aspirin use in COPD populations with risk of all-cause mortality, 

exacerbations and cardiovascular composite events during follow up. 

5.4 Methods 

5.4.1 Study design 

Despite the increased risk of mortality for COPD patients with CVD, there is currently a lack 

of CVD compatible therapeutics that reduces the risk of exacerbations and mortality for these 

patients. Considering the complex discovery process associated with developing new 

therapeutics, a cost and time effective method would be to repurpose existing drugs, such as 

aspirin, which is widely used in CVD populations and has been reported in observational 

studies to be associated with reduced exacerbations and mortality. I carried out all statistical 

analysis, coding and data presentation. 

To further explore the potential of aspirin for improved health outcomes in COPD patients, I 

analysed using statistical methods, large datasets consisting of COPD patients from the 

SUMMIT (n=16485, moderate COPD with risk/history of CVD defined as CAD, PAD, stroke, 

MI and diabetes with target organ disease, median follow up 1.8 years, published 2016) and 

IMPACT (n=10355, severe COPD, 52 weeks follow up, published 2018) studies, to evaluate 

the effects of aspirin on risk of mortality, exacerbations and cardiovascular composite events 

(200, 201).  
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5.4.2 Datasets 

The SUMMIT and IMPACT datasets were provided by Clinical Study Data Request 

(https://www.clinicalstudydatarequest.com). Dr Marie Fisk wrote the proposal for using the 

patient level datasets for analysis described in this chapter. 

The SUMMIT study was a clinical trial assessing the effectiveness of fluticasone furoate (FF), 

vilanterol (VI) and FF/VI combination treatment on the primary outcome of all-cause mortality. 

The inclusion criteria for the study population included current or former smokers with 

minimum of ten-pack-year history, 40-80 years old, moderate COPD (FEV1% 50-70% of 

predicted value), history or increased risk (60 years or older using medication for more than 

two of hypercholesterolemia, hypertension, diabetes, PAD) of CVD (CAD, PAD, stroke, MI, 

diabetes with target organ disease) (200). The exclusion criteria were non-COPD respiratory 

disease, lung reduction surgery, oral corticosteroid use, on long term oxygen, severe heart 

failure, life expectancy below three years, end stage chronic renal disease (200). The SUMMIT 

study researchers found that the treatments did not have a significant effect on all-cause 

mortality or cardiovascular events, but did reduce exacerbations (200).  

The IMPACT study was a clinical trial assessing the effectiveness of FF/VI/umeclidinium 

triple therapy, FF/VI dual therapy and VI/umeclidinium dual therapy on the primary outcome 

of exacerbation rate. The inclusion criteria for participants included severe COPD (FEV1% 

below 50% of predicted value and history of at least one moderate/severe exacerbation one 

year prior to study entry) and to be 40 years or older (201). The IMPACT study researchers 

found that triple therapy was significantly more effective in reducing exacerbation rate 

compared to the dual therapies, and therapies including FF were associated with lower 

mortality than VI/umeclidinium (201). 

https://www.clinicalstudydatarequest.com/
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The datasets included detailed records of the concomitant medications (including aspirin) that 

the study participants were using at baseline. It is unknown how long the participants had been 

using reported concomitant medications or if they stopped using them during the course of the 

clinical study and follow up period. Only the intention to treat population will be used in data 

analysis. 

5.4.3 Statistical analysis 

The primary outcomes of this analysis were hazard ratios for time to first event occurrence of 

ACM, moderate and severe exacerbations (moderate defined as requiring 

antibiotics/glucocorticoid treatment, severe defined as requiring hospitalisation) and 

cardiovascular events, calculated using multivariate Cox Proportional Hazards models. The 

hazard ratios are presented using forest plots. Sensitivity analyses were carried out for the 

covariates of age (oldest strata), sex (M/F), race (white) and country (top five sources of 

participants), and the results were compared to those from the main population. Additionally, 

for bias analysis, E-values were calculated, which represent the minimum strength of 

association an unmeasured confounder would need to have with the treatment (aspirin) and the 

outcome to explain away an observed association between aspirin and the outcome (125). 

Propensity score matching was carried out on the SUMMIT and IMPACT datasets using 

covariates that predict for being on/off aspirin. In the SUMMIT dataset, 5038 matched pairs 

(of aspirin users and non-users) were selected. In the IMPACT dataset, 2037 matched pairs of 

aspirin users and non-users were selected. The scores were calculated with logistic regression 

and the matching method used was ‘nearest neighbour matching’, with a caliper of 0.2. The 

adjustment factors of the logistic regression for SUMMIT were history of PAD, stroke, CAD, 

MI and percutaneous coronary intervention, and for IMPACT were history of PAD, stroke, 

CAD, MI and angina. Hazard ratios for health outcomes were then calculated using the 

propensity score matched groups. 
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All analysis (except for E-values which were determined manually) was carried out with 

RStudio Desktop, R version 4.2.0. The full code used for this analysis is available in Appendix 

A. 

5.5 Results 

Datasets consisting of COPD patients from the SUMMIT and IMPACT studies were analysed 

to assess the association between aspirin use and risk of mortality, exacerbations and 

cardiovascular events over the follow up period. 

From the SUMMIT and IMPACT studies, 16,485 moderate COPD patients with a history/risk 

of CVD and 10355 severe COPD patients were included respectively. 

The demographics and clinical history/events of the populations are shown in Table 4. All 

subjects were from the intention to treat population. The SUMMIT and IMPACT populations 

had similar age, sex, BMI and ethnic backgrounds. The main difference is that the IMPACT 

subjects had more severe COPD (% FEV1 less than 50% of predicted value) and were not 

specifically recruited from a CVD risk/history population. SUMMIT had a median follow up 

time of 1.8 years and IMPACT had a follow up time of 52 weeks. Reported events were those 

that took place on treatment (trial drugs or placebo), except for ACM in SUMMIT, which 

included all deaths before the common end date.  

Cardiovascular events for SUMMIT was defined as CV death, MI, stroke, unstable angina, 

transient ischaemic attack, and for IMPACT as CV death, acute MI Preferred Term (PT), CNS 

haemorrhage, heart disease Standardised MedDRA Queries (SMQ), MI PT, MI SMQ. For heart 

disease, definition for SUMMIT is myocardial infarction and/or coronary artery disease and/or 

percutaneous coronary intervention, and definition for IMPACT is myocardial infarction 

and/or coronary artery disease and/or angina. 
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Table 4: Demographics and clinical history of the SUMMIT and IMPACT populations. 

Variable SUMMIT (n=16485) IMPACT (n=10355) 

Age (mean years) 65 65.3 

Sex 12289 (75%) male 6870 (66%) male 

BMI (mean) 28.0 26.6 

Race 13357 (81%) white 8083 (78%) white 

Smoking Status 7678 (47%) current smoker 3587 (35%) current smoker 

Pack Years (smoking) 41 47 

FEV1% 59.1 45.5 

Previous exacerbations prior 

to study entry 

(0, 1, >=2) 

0 (61%) 

1 (24%) 

>=2 (15%) 

0 (<1%) 

1 (45%) 

>=2 (55%) 

 

Aspirin use (monotherapy) 6844 (41.5%) 2318 (22.4%) 

Reported events (first time 

occurrence) 

  

All-cause mortality 1037 (6%) 138 (1%) 

Moderate exacerbations 2858 (17%) 4401 (43%) 

Severe exacerbations 1293 (8%) 1180 (11%) 

Cardiovascular events 688 (4%) 299 (3%) 

Clinical History (Yes)   

Diabetes 4376 (27%) 1599 (16%) 

Hypercholesterolemia  10190 (62%) 3367 (33%) 

Hypertension 14265 (87%) 5446 (53%) 

Heart Disease 8599 (52%) 1684 (16%) 

Arrhythmia NA 816 (8%) 

Stroke 1595 (10%) 458 (4%) 

HF 3456 (21%) 539 (5%) 

Peripheral Artery Disease 3145 (19%) 342 (3%) 
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5.5.1 All-cause mortality 

Aspirin use in the SUMMIT study was associated with an increased risk of ACM before the 

common end date (January 25th 2015, date by which there would be at least 1000 deaths), HR 

of [1.15 (1.00-1.33), p=0.048], with 1037 deaths and 15448 survivors before the common end 

date. In the IMPACT dataset, aspirin use was also associated with increased risk of ACM, 

although the effect was not significant, HR of [1.45 (0.95-2.19), p=0.082] (Figure 18), with 

138 deaths and 10217 survivors. SUMMIT multivariate HRs were adjusted for covariates of 

age, sex, BMI, smoking status, smoking pack years, FEV1% and history of stroke, HF, 

hypercholesterolemia, hypertension, heart disease, diabetes and PAD. IMPACT multivariate 

HRs were adjusted for covariates of age, sex, BMI, trial treatment arm, smoking status, 

smoking pack years, FEV1% and history of arrhythmia, stroke, HF, hypercholesterolemia, 

hypertension, heart disease, diabetes and PAD. 
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Figure 18: Forest plot showing multivariate adjusted HR and 95% CI for aspirin use 

and its relationship with ACM. ACM=All-cause mortality. SUMMIT multivariate HRs 

were adjusted for covariates of age, sex, BMI, smoking status, smoking pack years, FEV1% 

and history of stroke, HF, hypercholesterolemia, hypertension, heart disease, diabetes and 

PAD. IMPACT multivariate HRs were adjusted for covariates of age, sex, BMI, trial 

treatment arm, smoking status, smoking pack years, FEV1% and history of arrhythmia, 

stroke, HF, hypercholesterolemia, hypertension, heart disease, diabetes and PAD. 

  

 

5.5.2 Exacerbations 

Aspirin use was associated with increased risk of moderate exacerbations in the SUMMIT 

[HR=1.17 (1.08-1.27), p<0.001] and IMPACT [HR=1.10 (1.02-1.18), p=0.012] populations. 

There were 2858 patients who experienced a moderate exacerbation in the SUMMIT trial and 

4401 patients who did so in the IMPACT trial. For severe exacerbations, aspirin use was also 

associated with an increased risk in the SUMMIT [HR=1.35 (1.19-1.52), p<0.001] trial with 

1293 patients reporting a severe exacerbation, and in the IMPACT [HR=1.30 (1.14-1.49), 

p<0.001] trial with 1180 patients reporting a severe exacerbation (Figure 19). SUMMIT and 
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IMPACT multivariate HRs were adjusted for covariates of age, sex, BMI, trial treatment arm, 

smoking status, smoking pack years, FEV1% and previous exacerbations.  

 

Figure 19: Forest plot showing multivariate adjusted HR and 95% CI for aspirin use 

and its relationship with moderate and severe exacerbations. Exac Sev= Severe 

exacerbation, Exac Mod= Moderate exacerbation. SUMMIT and IMPACT multivariate HRs 

were adjusted for covariates of age, sex, BMI, trial treatment arm, smoking status, smoking 

pack years, FEV1% and previous exacerbations. 

 

5.5.3 Cardiovascular events 

In the SUMMIT dataset, aspirin use was associated with an increased risk of cardiovascular 

events (688 patients experienced an event), with an adjusted HR of 1.65 (1.33-2.05), p<0.001. 

The adjustment factors were age, sex, BMI, trial treatment arm, smoking status, smoking pack 

years, history of stroke, HF, hypercholesterolemia, hypertension, heart disease, PAD, diabetes, 

previous exacerbations. For the IMPACT dataset, aspirin use was associated with an increased 

rate (adjusted) of cardiovascular events (rate ratio=2.22), with 299 patients experiencing an 

event. The adjustment factors were age, sex, BMI, trial treatment arm, smoking status, smoking 
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pack years, history of arrhythmia, stroke, HF, hypercholesterolemia, hypertension, heart 

disease, PAD, diabetes, previous exacerbations. 

5.5.4 Sensitivity analysis 

In sensitivity analysis, the subgroups of age (>=75), sex (M/F), race (white) and country (top 

five sources of patients) were analysed. Sensitivity analysis did not show any major differences 

from the main group, on aspirin use and association with increased risk of ACM, exacerbation 

and cardiovascular events. Subgroup analysis by race (white) found for moderate exacerbations 

a HR of [1.27 (1.15-1.40), p<0.001] in SUMMIT and a HR of [1.08 (1-1.17), p=0.049] in 

IMPACT. The same subgroup analysis for severe exacerbations found a HR of [1.33 (1.15-

1.55), p<0.001] in SUMMIT and a HR of [1.31 (1.12-1.53), p<0.001] in IMPACT. 

5.5.5 Bias analysis 

Whilst many potential confounders were included as covariates in the Cox Models, E-values 

were also calculated (for the HR estimate and the lower estimate of the 95% CI) to identify the 

minimum association with aspirin and outcomes an unknown confounder would need to have 

to explain away the observed association of aspirin use and increased risk of ACM, 

exacerbations and cardiovascular events. For the outcome of ACM in the SUMMIT dataset, 

the E-value was 1 (for the lower estimate of CI), and for the outcome of moderate exacerbation, 

the E-values were 1.37 (SUMMIT) and 1.16 (IMPACT). For the outcome of severe 

exacerbation, the E-values for the lower estimate of CI were 1.67 (SUMMIT) and 1.54 

(IMPACT). A low E-value (1-2) indicates an unknown confounding factor can credibly explain 

away observed associations of aspirin with COPD health outcomes. 
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5.5.6 Propensity score matched groups 

After matching, there were 5038 pairs from the SUMMIT study and 2037 pairs from the 

IMPACT study. The analysis results of the propensity score matched groups were similar to 

the findings of the main group. For the matched pairs from the SUMMIT study, association of 

aspirin use with ACM risk was HR [1.22 (1.04-1.43), p=0.015], [1.19 (1.09-1.31), p<0.001] 

for moderate exacerbation risk and [1.32 (1.14-1.53), p<0.001] for severe exacerbation risk. 

For the matched pairs from the IMPACT study, association of aspirin use with risk of ACM, 

moderate exacerbation and severe exacerbation was [1.32 (0.79-2.19), p=0.3], [1.11 (1.01-

1.23), p=0.031] and [1.16 (0.97-1.39), p=0.11] respectively. The demographics tables for the 

new matched SUMMIT and IMPACT groups are available in Appendix D. Risk of bleeding 

analysis (adjusted for age, sex, BMI and trial treatment arm) was also carried out, with aspirin 

use being associated (as expected) with increased risk of bleeding in SUMMIT [HR 1.25 (0.88-

1.78), p=0.2] and IMPACT [HR 2.19 (1.09-4.41), p=0.028] populations. 

5.5.7 Absolute Risk 

In the SUMMIT population, the absolute risk of ACM in aspirin users was 6.9% compared to 

5.3% in non-users. For risk of moderate exacerbations, aspirin users were also at increased risk 

compared to non-users, at 18.2% and 15.4% respectively. Aspirin users had an absolute risk of 

8.4% for severe exacerbations, while non-users were at 6.2%. 

In the IMPACT population, the absolute risk of ACM in aspirin users and non-users was 1.8% 

versus 1.2%. For risk of moderate exacerbations, aspirin users were at 44.2% risk compared to 

41.5% for non-users. Additionally, aspirin users had 13.4% risk of severe exacerbations, while 

non-users were at 10.3% risk. 
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5.6 Discussion 

Findings from previous observational studies had suggested a potential association of aspirin 

use with reduced risk of mortality and exacerbations in COPD patients. Those findings, in 

addition to aspirin’s well known cardiovascular benefits, suggested a potential for aspirin as a 

well-tolerated and accessible treatment for COPD patients with a CVD background. In this 

project, two large high quality datasets from the SUMMIT (n=16485) and IMPACT (n=10355) 

trials were analysed, and the multivariate Cox models showed an association of aspirin use 

with increased risk of ACM, exacerbations (moderate and severe) and cardiovascular events. 

These associations were significant for outcomes in both datasets, with the exception of ACM 

in the IMPACT trial. These results are different to previous studies that suggested aspirin use 

was associated with ameliorative effects in COPD populations, and further investigation is 

needed to identify the causes of this (122). 

Relative risk measures such as hazard ratios can overestimate an observed effect, so absolute 

risk of events was also calculated (202). When considering absolute risk of ACM, moderate 

and severe exacerbations, aspirin users were also at higher risk of an event compared to non-

users, supporting the results of the hazard ratio analysis. Sensitivity analysis focusing on age 

(oldest group), sex, race (white) and country did not reveal major differences from the findings 

of the main group, nor did it find any association of aspirin use with reduced risk of ACM, 

exacerbations or cardiovascular events. 

A previous observational study by Fawzy et al involving 503 propensity score matched 

participant pairs had suggested that aspirin use in COPD patients was associated with reduced 

exacerbation rate (122). The contrasting findings of this study could be due to the heterogeneity 

in methods and population clinical history of previous studies, as well as varied data quality. 

The study by Fawzy et al analysed a population which also included non-smokers and excluded 
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those with unstable CVD (122, 203). This analysis used high quality trial data from populations 

inclusive of moderate and severe COPD and those with a history/risk of CVD. The SUMMIT 

and IMPACT datasets had consistent data entry and well defined clinical conditions. 

Additionally, it has been noted by Bakshi et al 2021 that many previous observational studies 

investigating aspirin use in COPD were affected by biases such as collider-stratification bias 

(shows non-existent association between exposure and outcome) and exposure 

misclassification (204). 

Additionally, considering aspirin’s indication for CVD treatment regimens, patients who are 

prescribed aspirin have more CVD risk factors such as increased platelet count or have already 

been diagnosed with CVD. These risk factors such as increased platelet count have been 

implicated in COPD pathogenesis (including acute exacerbations) and are also associated with 

poor health outcomes. Potentially, the findings of this study that aspirin use is associated with 

worse outcomes in COPD patients could be due to confounding factors such as aspirin users 

having poorer health, more risk factors for mortality, and acute exacerbations at baseline, 

compared to non-users of aspirin. 

However, even after creating new propensity score matched groups based on covariates that 

predict for aspirin use (e.g. CAD, MI and stroke), to reduce potential bias caused by 

confounding factors, aspirin was still associated with increased risk of ACM, moderate and 

severe exacerbations over follow up. Nevertheless, matching cannot fully exclude bias such as 

disease severity. 

Bias analysis showed that E-values calculated using the lower estimate of the outcome HRs 

were relatively low, with values being between 1-2. This suggests that an unknown 

confounding factor could credibly explain away the observed association of aspirin use with 

negative health outcomes. 
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Dysregulated SPM pathways could also have contributed to the observed effects. It has been 

previously reported that T cells sourced from chronic heart failure patients were unresponsive 

to treatment with RvD1 and Resolvin D2 (76). Considering the systemic inflammation involved 

in COPD and the significant presence of CVD and CVD risk factors in the SUMMIT and 

IMPACT populations, it is possible that dysregulated SPM pathways in these patients 

prevented them from benefiting from the immunomodulatory effects of aspirin (production of 

aspirin triggered SPMs). 

Additionally, the use of bronchodilators among significant portions of the study population 

could have increased the risk of mortality and development of CVD (which is a reported 

negative effect of bronchodilators), potentially masking the beneficial effects of aspirin (94). 

Given the association of aspirin use with negative health outcomes shown in this study, and the 

high level of aspirin use in the COPD population (22.4% for IMPACT and 41.5% for 

SUMMIT), it is essential to investigate the causes of these findings. This is particularly 

important considering aspirin’s status as a commonly prescribed CVD drug and the elevated 

risk of concurrent CVD in COPD patients. To identify potential molecular mechanisms that 

could explain the observed harmful effects of aspirin use in this study, levels of platelets and 

aspirin triggered SPMs should be measured in aspirin users and non-users, to assess if aspirin 

directed pathways are functioning as expected. 

5.6.1 Limitations 

There are several limitations to this analysis. For analysis of populations with the demographic 

characteristics seen in this study, it is difficult to find patients in statistically viable numbers 

who are only using the medication of interest, such as aspirin. While aspirin users were defined 

as patients who were only using one type of anti-platelet medication (aspirin), the other 

medications they were using such as statins, beta-blockers and ACEI/ARBs were not included 
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in the analysis. These medications could have an effect on health outcomes, including mortality 

and exacerbations. Particularly, statins have been shown to decrease mortality risk and beta-

blockers are of increasing interest in treating COPD patients with concurrent CVD (101, 205). 

Another limitation is the variation in aspirin dosages amongst the analysis population. The 

regularity of use, dosage and administrative route varied in the included population, which 

could have an influence on the health outcomes of interest. Additionally, while the trial drugs 

were included in the Cox Models if they were found to have had an effect on study outcomes 

(ACM, exacerbations and cardiovascular events), their potential interactions with aspirin and 

other CVD medications have not been assessed. To investigate this further, sensitivity analysis 

by trial drug subgroup could be carried out and compared with the designated placebo group 

from the SUMMIT study.  

5.6.2 Impact and future work 

The findings of this study that aspirin use is associated with increased risk of exacerbations and 

all-cause mortality are highly significant given the high proportion of COPD patients using 

aspirin and will be directly followed by the ASPIRE clinical study, which has already been 

approved. The ASPIRE study will involve randomised groups of 24 COPD patients/smokers 

and 24 controls given omega-3 and aspirin supplementation or placebo, over the course of 12 

weeks. Plasma SPM levels and lung/cardiovascular function will be regularly measured during 

the study to assess the effects of aspirin use on production of SPMs as well as pulmonary and 

cardiovascular health. 

5.6.3 Summary 

This study comprehensively analysed large high quality datasets, comprised of moderate and 

severe COPD patients, including those with a history/risk of CVD. These demographic and 

clinical characteristics made the SUMMIT and IMPACT datasets ideal for assessing the 
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potential of aspirin use in reducing mortality and exacerbations in COPD patients, particularly 

those with CVD. Contrary to previous reports from observational studies, the findings of this 

study show that aspirin is associated with increased risk of ACM, exacerbations and 

cardiovascular events. In contrast to previous observational studies which observed beneficial 

effects of aspirin (smaller cohorts), at best, this work suggests no benefit and possible increased 

risk of harm. Although these data may simply reflect that patients prescribed aspirin have 

increased cardiovascular risk and poorer health than those that do not, and statistical adjustment 

for confounders (despite propensity score matching and other methodology) is not sufficient to 

mitigate this inherent association. Given these data, a randomised controlled trial would be the 

useful methodology to assess the effect of aspirin on exacerbations and mortality in patients 

with COPD. 
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Chapter Six: Conclusions 

This project evaluated immunomodulatory mediators and the anti-platelet drug aspirin which 

have potential for improving health outcomes in COPD and CVD, with CVD being a frequently 

reported comorbidity of COPD patients. 

A systematic review and meta-analysis investigated for the first time the potential ameliorative 

role of the IL-33/ST2 axis across the spectrum of human CVD, with contradictory findings 

from previous studies. IL-33 is known to have significant downstream effects as a mediator of 

innate and adaptive immunity, with ST2 as its receptor. Here, increased levels of circulating 

ST2 are associated with increased risk of mortality and MACE in CVD and community cohorts. 

This meta-analysis systematically evaluated IL-33 and sST2 levels and found that circulating 

sST2 measurement may have clinical value in differentiating patients with CVD versus 

controls without CVD, with the greatest difference in sST2 levels compared with controls being 

observed in AF and CHF. While IL-33 levels were lower in HF, CAD and ACS patients 

compared to controls, the opposite was observed in stroke patients which requires further 

investigation. These findings suggest a prognostic and diagnostic role for sST2 and IL-33 

shows promise as a biomarker of CVD. Limitations of this study include the difficulty of 

measuring circulating IL-33 levels (circulating IL-33 levels were much lower than sST2 levels 

due to sST2’s role as a decoy receptor to regulate IL-33 activity), the low number of IL-33 

clinical studies and different adjustment factors being used for reported multivariate hazard 

ratios. Studies involving larger sample sizes would further improve understanding of this axis 

and its role in CVD. Further work to build on these findings should be carried out, including 

the evaluation of IL-33 levels and ST2L expression in brain and carotid artery tissue sections, 

to elucidate the causes of the higher levels of circulating IL-33 in stroke patients. I would also 

like to measure circulating IL-33 levels in COPD patients with and without CVD to further 
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increase understanding of the role of IL-33 in COPD and CVD pathogenesis, which would 

inform future COPD therapies targeting the IL-33/ST2 axis. 

RvD1 and Del-1 were measured using ELISAs in the same human COPD serum samples, to 

evaluate differences in stable and unstable COPD patients and to analyse the relationship 

between the mediators. RvD1 and Del-1 levels were found to be significantly lower in stable 

COPD patients, suggesting dysregulated resolution pathways in chronic inflammatory disease. 

In COPD patients who had exacerbations, RvD1 levels were found to be increased, which 

suggests that these immunomodulatory SPMs are essential for the natural resolution of 

inflammation in COPD. These findings support a beneficial role for RvD1 in COPD, and 

provided the foundation for the ongoing RESCUE study which is assessing the full range of 

SPMs in COPD patients and their trajectories following an exacerbation. In addition to the 

ongoing RESCUE study, other future work I would like to carry out include the evaluation of 

SPM receptor expression in COPD lung tissue, which could provide a more accurate 

assessment of SPM activity in COPD patients, considering that SPMs are rapidly degraded. 

A comprehensive analysis of two large trial datasets (SUMMIT n=16485, IMPACT n=10355) 

was carried out, involving moderate and severe COPD patients, and those with a history/risk 

of CVD, to evaluate the potential treatment benefits of aspirin, which is known to have anti-

platelet properties as well as producing immunomodulatory aspirin triggered epimers of SPMs. 

The analysis showed that aspirin use is associated with an increased risk of ACM, 

exacerbations and cardiovascular events, which is contrary to the findings of previous 

observational studies. Analysis of propensity matched groups also found aspirin use was 

associated with increased ACM and exacerbation risk. However, E-values calculated for bias 

analysis were low (with values being between 1-2), which suggests that an unknown 

confounding factor could easily explain away the observed association of aspirin use with 

negative health outcomes. These findings suggests that aspirin should not be indicated for 
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COPD treatment regimens and further work is needed to identify the causes of this increased 

risk, as well as considering treatment recommendations for COPD patients who are often using 

aspirin. Limitations of this study include the potential of unknown confounding factors such as 

poorer baseline health for aspirin users influencing the findings, the varying dosages of aspirin 

reported across the populations and the use of other CVD medications. 

In summary, this research project showed that sST2 has a prognostic and diagnostic role in 

CVD and IL-33 has potential as a biomarker of CVD and RvD1 levels are different in stable 

COPD patients, COPD patients with exacerbations at baseline and control groups. Additionally, 

aspirin use is associated with increased risk of all-cause mortality and exacerbations in COPD 

populations (moderate and severe) with and without CVD. 
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Appendices 

Appendix A 

SUMMIT CODE 

install.packages(c("survival","survminer","ranger","ggplot2","ggfortify","tidyr","dplyr","janit

or","lubridate","mass","magrittr","ggplot","tidyverse")) 

install.packages(c("MASS","magrittr")) 

 

concomitantmeds <- gsk_113782_adcm 

cvcompevents <- gsk_113782_adcv 

acm <- gsk_113782_addth 

exac<-gsk_113782_adexac 

sla<-gsk_113782_adsl 

cvcrit<-gsk_113782_adcvcrit 

cvmeds<-gsk_113782_adcmcv 

adverse<-gsk_113782_adae 

glucose<-gsk_113782_adlb 

fev<-gsk_113782_adpft 

cvhist<-gsk_113782_adcvhist 

smoking<-gsk_113782_adsu 

t2e<-gsk_113782_adtte 

 

#Selecting data 

library("survival","survminer") 

library("tidyverse","dplyr") 

library("tibble") 

install.packages(c("reshape2")) 

library(reshape2) 

library("MatchIt") 

library("Hmisc") 

library("nnet") 
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library("tableone") 

library("DMwR") 

library("cobalt") 

library("weights") 

library("Zelig") 

library("rbounds") 

library("randomForest") 

library(arsenal) 

library("broom") 

library("gtsummary") 

library("MASS") 

library("magrittr") 

library("MatchThem") 

library("mice") 

 

 

cvcrit<-dplyr::select(gsk_113782_adcvcrit,USUBJID,AVALC,PARAM) 

cvcrit[1,] 

cvcrit$USUBJID<-as.factor(cvcrit$USUBJID) 

cvcrit<-reshape2::dcast(cvcrit,USUBJID~PARAM,value.var="AVALC") 

 

 

cvhist<-dplyr::select(gsk_113782_adcvhist,USUBJID,AVALC,PARAM) 

cvhist[1,] 

colnames(cvhist)[colnames(cvhist)=="PARAM"]<-"EVENT_HIST" 

cvhist%<>%filter(EVENT_HIST=="Ever Diagnosed with Congestive Heart Failure") 

cvhist$EVENT_HIST=droplevels(cvhist$EVENT_HIST) 

cvhist$AVALC[cvhist$AVALC==""]=NA 

cvhist$AVALC[cvhist$AVALC=="U"]=NA 

cvhist$AVALC=droplevels(cvhist$AVALC) 

colnames(cvhist)[colnames(cvhist)=="AVALC"]<-"HF" 

cvhist$EVENT_HIST<-NULL 
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concomitantmeds<-

dplyr::select(gsk_113782_adcm,USUBJID,ONTRTFL,DCL2T,CMBASE) 

concomitantmeds[1,] 

colnames(concomitantmeds)[colnames(concomitantmeds)=="ONTRTFL"]<-

"USED_DURING_TRIAL" 

table(c(concomitantmeds$DCL2T)) 

diabetesmeds<-concomitantmeds%>%filter(DCL2T=="DRUGS USED IN DIABETES") 

diabetesmeds[1,] 

library(magrittr) 

diabetesmeds%<>%distinct(USUBJID,CMBASE,.keep_all=TRUE) 

 

diabetesmeds%<>%mutate(CLASS=case_when(CMBASE=="ACARBOSE"~"GLUCOSID

ASE_INHIB", 

                                       CMBASE=="MIGLITOL"~"GLUCOSIDASE_INHIB", 

                                       CMBASE=="VOGLIBOSE"~"GLUCOSIDASE_INHIB", 

                                       CMBASE=="INSULIN ASPART"~"INSULINS", 

                                       CMBASE=="INSULIN ASPART PROTAMINE"~"INSULINS", 

                                       CMBASE=="INSULIN DETEMIR"~"INSULINS", 

                                       CMBASE=="INSULIN GLARGINE"~"INSULINS", 

                                       CMBASE=="INSULIN GLULISINE"~"INSULINS", 

                                       CMBASE=="INSULIN HUMAN"~"INSULINS", 

                                       CMBASE=="INSULIN HUMAN 

SEMISYNTHETIC"~"INSULINS", 

                                       CMBASE=="INSULIN INJECTION, BIPHASIC 

ISOPHANE"~"INSULINS", 

                                       CMBASE=="INSULIN ISOPHANE, HUMAN 

BIOSYNTHETIC"~"INSULINS", 

                                       CMBASE=="INSULIN LISPRO"~"INSULINS", 

                                       CMBASE=="INSULIN LISPRO PROTAMINE"~"INSULINS", 

                                       CMBASE=="INSULIN NOS"~"INSULINS", 

                                       CMBASE=="INSULIN PORCINE"~"INSULINS", 

                                       CMBASE=="INSULIN, HUMAN BIOSYNTHETIC"~"INSULINS", 
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                                       CMBASE=="ISOPHANE INSULIN"~"INSULINS", 

                                       CMBASE=="BUFORMIN"~"BIGUANIDES", 

                                       CMBASE=="METFORMIN"~"BIGUANIDES", 

                                       CMBASE=="PHENFORMIN"~"BIGUANIDES", 

                                       CMBASE=="GLUCOMET (NOS)"~"BIGUANIDES", 

                                       CMBASE=="GLUCONORM 

(NOS)"~"SULFONYLUREAS_BIGUANIDES", 

                                       CMBASE=="GLUCORED 

NOS"~"SULFONYLUREAS_BIGUANIDES", 

                                       CMBASE=="ZOMARIST (NOS)"~"DPP4_BIGUANIDES", 

                                       

CMBASE=="GLUCONORM"~"SULFONYLUREAS_BIGUANIDES", 

                                       CMBASE=="ALOGLIPTIN"~"DPP4", 

                                       CMBASE=="GALVUS (NOS)"~"DPP4", 

                                       CMBASE=="GEMIGLIPTIN"~"DPP4", 

                                       CMBASE=="LINAGLIPTIN"~"DPP4", 

                                       CMBASE=="SAXAGLIPTIN"~"DPP4", 

                                       CMBASE=="SITAGLIPTIN"~"DPP4", 

                                       CMBASE=="VILDAGLIPTIN"~"DPP4", 

                                       CMBASE=="EXENATIDE"~"GLPR_AGONIST", 

                                       CMBASE=="LIRAGLUTIDE"~"GLPR_AGONIST", 

                                       CMBASE=="LIXISENATIDE"~"GLPR_AGONIST", 

                                       CMBASE=="CHLORPROPAMIDE"~"SULFONYLUREAS", 

                                       CMBASE=="DIABETA (NOS)"~"SULFONYLUREAS", 

                                       CMBASE=="GLIBENCLAMIDE"~"SULFONYLUREAS", 

                                       CMBASE=="GLIBETIC (NOS)"~"SULFONYLUREAS", 

                                       CMBASE=="GLICLAZIDE"~"SULFONYLUREAS", 

                                       CMBASE=="GLIM (NOS)"~"SULFONYLUREAS", 

                                       CMBASE=="GLIMEL (NOS)"~"SULFONYLUREAS", 

                                       CMBASE=="GLIMEPIRIDE"~"SULFONYLUREAS", 

                                       CMBASE=="GLIPID NOS"~"SULFONYLUREAS", 

                                       CMBASE=="GLIPIZIDE"~"SULFONYLUREAS", 

                                       CMBASE=="GLIQUIDONE"~"SULFONYLUREAS", 
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                                       CMBASE=="GLYCRON (NOS)"~"SULFONYLUREAS", 

                                       CMBASE=="TOLBUTAMIDE"~"SULFONYLUREAS", 

                                       

CMBASE=="CANAGLIFLOZIN"~"SODIUM_TRANSPORT_INHIB", 

                                       

CMBASE=="DAPAGLIFLOZIN"~"SODIUM_TRANSPORT_INHIB", 

                                       CMBASE=="MITIGLINIDE"~"MEGLITINIDES", 

                                       CMBASE=="NATEGLINIDE"~"MEGLITINIDES", 

                                       CMBASE=="REPAGLINIDE"~"MEGLITINIDES", 

                                       CMBASE=="LOBEGLITAZONE"~"THIAZOLIDINEDIONE", 

                                       CMBASE=="PIOGLITAZONE"~"THIAZOLIDINEDIONE", 

                                       CMBASE=="ROSIGLITAZONE"~"THIAZOLIDINEDIONE", 

                                       CMBASE=="THIAZOLIDINEDIONE 

(NOS)"~"THIAZOLIDINEDIONE", 

                                       CMBASE=="CINNAMOMUM VERUM  EXTRACT"~"OTHER", 

                                       CMBASE=="COLESEVELAM"~"OTHER", 

                                       CMBASE=="D.B.I. (NOS)"~"OTHER", 

                                       CMBASE=="DIABETOL (NOS)"~"OTHER", 

                                       CMBASE=="EPALRESTAT"~"OTHER", 

                                       CMBASE=="ORAL HYPOGLYCEMICS NOS"~"OTHER", 

                                       CMBASE=="PRAMLINTIDE"~"OTHER", 

                                       CMBASE=="THIOCTIC 

ACID"~"OTHER",TRUE~NA_character_)) 

 

diabetesmeds[1,] 

diabetesmeds$USED_DURING_TRIAL<-diabetesmeds$DCL2T<-

diabetesmeds$CMBASE<-NULL 

diabetesmeds%<>%distinct(USUBJID,CLASS,.keep_all=TRUE) 

diabetesmeds$VALUE<-1 

diabetesmeds<-reshape2::dcast(diabetesmeds,USUBJID~CLASS,value.var="VALUE") 

diabetesmeds[is.na(diabetesmeds)]<-0 

 

 

cvmeds<-dplyr::select(gsk_113782_adcmcv,USUBJID,CVGROUP1) 
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cvmeds$CVMEDS<-1 

 

cvmeds$USUBJID<-as.factor(cvmeds$USUBJID) 

cvmeds[1,] 

cvmeds%<>%distinct(USUBJID,CVGROUP1,.keep_all=TRUE) 

cvmeds$CVGROUP1[cvmeds$CVGROUP1==""]=NA 

 

cvmeds<-reshape2::dcast(cvmeds,USUBJID~CVGROUP1,value.var="CVMEDS") 

cvmeds[is.na(cvmeds)]<-0 

 

medstable<-merge(cvmeds,diabetesmeds,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

cvcompevents<-dplyr::select(gsk_113782_adcv,USUBJID,ADY,AVALC,ADT,LSTCT) 

cvcompevents[1,] 

colnames(cvcompevents)[colnames(cvcompevents)=="AVALC"]<-"EVENT_TYPE" 

cvcompevents%<>%filter(EVENT_TYPE=="Sudden Death"|EVENT_TYPE=="Myocardial 

Infarction"|EVENT_TYPE=="Stroke"|EVENT_TYPE=="Unstable 

Angina"|EVENT_TYPE=="Procedural Death (related to cardiac 

surgery)"|EVENT_TYPE=="Other CV Death"| 

                         EVENT_TYPE=="Transient Ischemic Attack"|EVENT_TYPE=="Coronary 

Revascularization") 

 

t2e<-dplyr::select(gsk_113782_adtte,USUBJID,AVAL,CNSR,PARAM) 

t2e[1,] 

t2e%<>%filter(PARAM=="Time to First On-treatment Moderate/Severe COPD 

Exacerbation") 

colnames(t2e)[colnames(t2e)=="AVAL"]<-"TIME_EXAC_TOTAL" 

colnames(t2e)[colnames(t2e)=="CNSR"]<-"CNSR_EXAC_TOTAL" 

t2e$PARAM<-NULL 

t2e%<>%distinct(USUBJID,TIME_EXAC_TOTAL,.keep_all=TRUE) 

 

 

t2em<-dplyr::select(gsk_113782_adtte,USUBJID,AVAL,CNSR,PARAM) 

t2em[1,] 
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t2em%<>%filter(PARAM=="Time to First On-treatment COPD Exacerbation Requiring Oral 

Corticosteroids") 

colnames(t2em)[colnames(t2em)=="AVAL"]<-"TIME_EXAC_MOD" 

colnames(t2em)[colnames(t2em)=="CNSR"]<-"CNSR_EXAC_MOD" 

t2em$PARAM<-NULL 

t2em%<>%distinct(USUBJID,TIME_EXAC_MOD,.keep_all=TRUE) 

 

 

t2es<-dplyr::select(gsk_113782_adtte,USUBJID,AVAL,CNSR,PARAM) 

t2es[1,] 

t2es%<>%filter(PARAM=="Time to First On-treatment COPD Exacerbation Requiring 

Hospitalisation") 

colnames(t2es)[colnames(t2es)=="AVAL"]<-"TIME_EXAC_SEV" 

colnames(t2es)[colnames(t2es)=="CNSR"]<-"CNSR_EXAC_SEV" 

t2es$PARAM<-NULL 

t2es%<>%distinct(USUBJID,TIME_EXAC_SEV,.keep_all=TRUE) 

 

 

test<-dplyr::select(gsk_113782_adtte,USUBJID,AVAL,CNSR,PARAM) 

test[1,] 

test%<>%filter(PARAM=="Time to First On-treatment Cardiovascular Composite Event") 

colnames(test)[colnames(test)=="AVAL"]<-"TIME_CVCOMP" 

colnames(test)[colnames(test)=="CNSR"]<-"CNSR_CVCOMP" 

test$PARAM<-NULL 

test%<>%distinct(USUBJID,TIME_CVCOMP,.keep_all=TRUE) 

 

 

exac<-

dplyr::select(gsk_113782_adexac,USUBJID,ACESEV,ADURN,ASTDT,ASTDY,APHASE) 

exac[1,] 

colnames(exac)[colnames(exac)=="ACESEV"]<-"SEVERITY" 

exac%<>%filter(APHASE=="On-treatment") 

exac%<>%distinct(USUBJID,ASTDY,.keep_all=TRUE) 
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exac$VALUE<-1 

exac$ADURN<-exac$ASTDT<-exac$ASTDY<-exac$APHASE<-NULL 

exac<-reshape2::dcast(exac,USUBJID~SEVERITY,value.var="VALUE",fun.aggregate=sum) 

 

exac%<>%mutate(TOTAL_EXAC=MODERATE+SEVERE) 

 

smoking<-dplyr::select(gsk_113782_adsu,USUBJID,AVAL,PARAM) 

smoking%<>%filter(PARAM=="Smoking Pack Years") 

smoking%<>%distinct(USUBJID,PARAM,.keep_all=TRUE) 

colnames(smoking)[colnames(smoking)=="AVAL"]<-"PACK_YRS" 

smoking$PARAM<-NULL 

 

 

cvmedsbreak<-dplyr::select(gsk_113782_adcmcv,USUBJID,ADECOD) 

cvmedsbreak%<>%filter(ADECOD=="BISOPROLOL 

FUMARATE"|ADECOD=="BISOPROLOL"|ADECOD=="AMLODIPINE BESILATE + 

BISOPROLOL FUMARATE"| 

                 ADECOD=="BISOPROLOL FUMARATE + 

HYDROCHLOROTHIAZIDE"|ADECOD=="BISOPROLOL + 

HYDROCHLOROTHIAZIDE"| 

                 ADECOD=="NEBIVOLOL 

HYDROCHLORIDE"|ADECOD=="NEBIVOLOL"|ADECOD=="HYDROCHLOROTHIA

ZIDE + NEBIVOLOL HYDROCHLORIDE"| 

                 ADECOD=="NEBIVILOL"|ADECOD=="AMLODIPINE + 

NEBIVOLOL"|ADECOD=="HYDROCHLOROTHIAZIDE + 

NEBIVOLOL"|ADECOD=="ATENOLOL"| 

                 ADECOD=="AMLODIPINE BESILATE + 

ATENOLOL"|ADECOD=="AMLODIPINE + ATENOLOL"|ADECOD=="ATENOLOL + 

HYDROCHLOROTHIAZIDE"|ADECOD=="ATENOLOL + 

CHLORTALIDONE"|ADECOD=="ATENOLOL + NIFEDIPINE"| 

                 ADECOD=="ATENOLOL + CHLORTALIDONE + 

NIFEDIPINE"|ADECOD=="ACETYLSALICYLIC ACID + ATORVASTATIN + 

CLOPIDOGREL"| 

                   ADECOD=="ACETYLSALICYLIC ACID + ATORVASTATIN + 

CLOPIDOGREL BISULFATE"|ADECOD=="ACETYLSALICYLIC ACID + 

CLOPIDOGREL"|ADECOD=="ACETYLSALICYLIC ACID + CLOPIDOGREL 

BISULFATE"|ADECOD=="ATORVASTATIN CALCIUM + CLOPIDOGREL 

BISULFATE"| 
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                   ADECOD=="CLOPIDOGREL"|ADECOD=="CLOPIDOGREL 

BESYLATE"|ADECOD=="CLOPIDOGREL BISULFATE"|ADECOD=="CLOPIDOGREL 

RESINATE"|ADECOD=="CLOPIDOGREL NAPADISILATE") 

cvmedsbreak%<>%distinct(USUBJID,ADECOD,.keep_all=TRUE) 

 

cvmedsbreak%<>%mutate(CLASS=case_when(ADECOD=="BISOPROLOL 

FUMARATE"~"BISOPROLOL", 

                               ADECOD=="BISOPROLOL"~"BISOPROLOL", 

                               ADECOD=="AMLODIPINE BESILATE + BISOPROLOL 

FUMARATE"~"BISOPROLOL", 

                               ADECOD=="BISOPROLOL FUMARATE + 

HYDROCHLOROTHIAZIDE"~"BISOPROLOL", 

                               ADECOD=="BISOPROLOL + 

HYDROCHLOROTHIAZIDE"~"BISOPROLOL", 

                               ADECOD=="NEBIVOLOL HYDROCHLORIDE"~"NEBIVOLOL", 

                               ADECOD=="NEBIVOLOL"~"NEBIVOLOL", 

                               ADECOD=="HYDROCHLOROTHIAZIDE + NEBIVOLOL 

HYDROCHLORIDE"~"NEBIVOLOL", 

                               ADECOD=="NEBIVILOL"~"NEBIVOLOL", 

                               ADECOD=="AMLODIPINE + NEBIVOLOL"~"NEBIVOLOL", 

                               ADECOD=="HYDROCHLOROTHIAZIDE + 

NEBIVOLOL"~"NEBIVOLOL", 

                               ADECOD=="ATENOLOL"~"ATENOLOL", 

                               ADECOD=="AMLODIPINE BESILATE + 

ATENOLOL"~"ATENOLOL", 

                               ADECOD=="AMLODIPINE + ATENOLOL"~"ATENOLOL", 

                               ADECOD=="ATENOLOL + 

HYDROCHLOROTHIAZIDE"~"ATENOLOL", 

                               ADECOD=="ATENOLOL + CHLORTALIDONE"~"ATENOLOL", 

                               ADECOD=="ATENOLOL + NIFEDIPINE"~"ATENOLOL", 

                               ADECOD=="ATENOLOL + CHLORTALIDONE + 

NIFEDIPINE"~"ATENOLOL", 

                               ADECOD=="ACETYLSALICYLIC ACID + ATORVASTATIN + 

CLOPIDOGREL"~"ASP_STAT_CLOPIDOGREL", 

                               ADECOD=="ACETYLSALICYLIC ACID + ATORVASTATIN + 

CLOPIDOGREL BISULFATE"~"ASP_STAT_CLOPIDOGREL", 
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                               ADECOD=="ACETYLSALICYLIC ACID + 

CLOPIDOGREL"~"ASP_CLOPIDOGREL", 

                               ADECOD=="ACETYLSALICYLIC ACID + CLOPIDOGREL 

BISULFATE"~"ASP_CLOPIDOGREL", 

                               ADECOD=="ATORVASTATIN CALCIUM + CLOPIDOGREL 

BISULFATE"~"STAT_CLOPIDOGREL", 

                               ADECOD=="CLOPIDOGREL"~"CLOPIDOGREL", 

                               ADECOD=="CLOPIDOGREL BESYLATE"~"CLOPIDOGREL", 

                               ADECOD=="CLOPIDOGREL BISULFATE"~"CLOPIDOGREL", 

                               ADECOD=="CLOPIDOGREL RESINATE"~"CLOPIDOGREL", 

                               ADECOD=="CLOPIDOGREL 

NAPADISILATE"~"CLOPIDOGREL",TRUE~NA_character_)) 

 

cvmedsbreak$ADECOD<-NULL 

cvmedsbreak$VALUE<-1 

cvmedsbreak%<>%distinct(USUBJID,CLASS,.keep_all=TRUE) 

cvmedsbreak<-reshape2::dcast(cvmedsbreak,USUBJID~CLASS,value.var="VALUE") 

 

medstable<-merge(medstable,cvmedsbreak,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

 

cvmedsbreak1<-dplyr::select(gsk_113782_adcmcv,USUBJID,ADECOD,CVGROUP1) 

cvmedsbreak1%<>%filter(CVGROUP1=="Anti-platelet therapy") 

cvmedsbreak1$CVGROUP1<-NULL 

cvmedsbreak1%<>%distinct(USUBJID,ADECOD,.keep_all=TRUE) 

cvmedsbreak1%<>%mutate(ANTIPLATE2=case_when(ADECOD=="ACETYLSALICYLA

TE LYSINE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + ALUMINIUM 

GLYCINATE + MAGNESIUM CARBONATE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + AMMONIUM 

CHLORIDE + ASCORBIC ACID + BAROSMA CRENATA + CAMPHOR + CINCHONA 

PUBESCENS + PERU BALSAM"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + AMMONIUM 

CHLORIDE + GLYCYRRHIZA (NOS) + LEVOMENTHOL"~"ASPIRIN", 
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                                      ADECOD=="ACETYLSALICYLIC ACID + ASCORBIC 

ACID"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + ASCORBIC ACID + 

CALCIUM GLUCONATE + DIPHENHYDRAMINE + METAMIZOLE SODIUM + 

RUTOSIDE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + ASCORBIC ACID + 

CALCIUM LACTOGLUCONATE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + ASCORBIC ACID + 

CHLORPHENAMINE MALEATE + MOROXYDINE HYDROCHLORIDE + 

PHENYLEPHRINE HYDROCHLORIDE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + ASCORBIC ACID + 

PARACETAMOL"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + ASCORBIC ACID + 

RUTOSIDE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + 

ATORVASTATIN"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + ATORVASTATIN + 

RAMIPRIL"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + ATORVASTATIN 

CALCIUM"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + 

BISOPROLOL"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + BISOPROLOL 

FUMARATE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + 

BUTALBITAL"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + BUTALBITAL + 

CAFFEINE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + 

CAFFEINE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CAFFEINE + CITRIC 

ACID + PARACETAMOL"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CAFFEINE + 

CODEINE + PARACETAMOL + PHENOBARBITAL"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CAFFEINE + 

CODEINE + PHENACETIN + PHENOBARBITAL"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CAFFEINE + 

CODEINE PHOSPHATE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CAFFEINE + 

ETHENZAMIDE"~"ASPIRIN", 
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                                      ADECOD=="ACETYLSALICYLIC ACID + CAFFEINE + 

ORPHENADRINE CITRATE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CAFFEINE + 

PARACETAMOL"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CAFFEINE + 

PHENACETIN"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CAFFEINE + 

QUININE SULPHATE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CAFFEINE + 

SALICYLAMIDE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CAFFEINE CITRATE 

+ FILIPENDULA ULMARIA"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + 

CALCIUM"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CHLORPHENAMINE 

+ DEXTROMETHORPHAN"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CHLORPHENAMINE 

MALEATE + PHENYLPROPANOLAMINE BITARTRATE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CHLORPHENAMINE 

+ DEXTROMETHORPHAN + PHENYLEPHRINE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CHLORPHENAMINE 

MALEATE + PHENYLPROPANOLAMINE BITARTRATE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CITRIC ACID + 

SODIUM BICARBONATE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CODEINE 

PHOSPHATE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CODEINE 

PHOSPHATE + PARACETAMOL"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + CODEINE 

PHOSPHATE + DIPHENHYDRAMINE HYDROCHLORIDE + MEPROBAMATE + 

NICOTINIC ACID"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + 

DEXTROMETHORPHAN HYDROBROMIDE + PHENYLEPHRINE 

HYDROCHLORIDE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + 

DIPHENHYDRAMINE CITRATE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + MAGNESIUM 

HYDROXIDE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + 

GLYCINE"~"ASPIRIN", 
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                                      ADECOD=="ACETYLSALICYLIC ACID + ESOMEPRAZOLE 

MAGNESIUM"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + 

METHOCARBAMOL"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + 

PARACETAMOL"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + MAGNESIUM 

OXIDE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + 

ROSUVASTATIN"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + 

PRAVASTATIN"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + PSEUDOEPHEDRINE 

HYDROCHLORIDE"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + RAMIPRIL + 

SIMVASTATIN"~"ASPIRIN", 

                                      ADECOD=="ACETYLSALICYLIC ACID + 

PHENYLPROPANOLAMINE BITARTRATE"~"ASPIRIN", 

                                      ADECOD=="ABCIXIMAB"~"ABCIXIMAB", 

                                      ADECOD=="ACETYLSALICYLIC ACID + 

DIPYRIDAMOLE"~"ASPDIP", 

                                      ADECOD=="CARBASALATE CALCIUM"~"CARB", 

                                      ADECOD=="CAFFEINE + CARBASALATE CALCIUM + 

PARACETAMOL"~"CARB", 

                                      ADECOD=="DIPYRIDAMOLE"~"DIP", 

                                      ADECOD=="ETHYL ICOSAPENTATE"~"ETHICO", 

                                      ADECOD=="DIPYRIDAMOLE + GINKGO BILOBA 

EXTRACT"~"DIP", 

                                      ADECOD=="ILOPROST"~"ILO", 

                                      ADECOD=="ICOSAPENT"~"ICO", 

                                      ADECOD=="MESOGLYCAN SODIUM"~"MESOGLYCAN", 

                                      ADECOD=="OZAGREL SODIUM"~"OZAGREL", 

                                      ADECOD=="OZAGREL"~"OZAGREL", 

                                      ADECOD=="SARPOGRELATE HYDROCHLORIDE"~"SARPO", 

                                      ADECOD=="PRASUGREL"~"PRAS", 

                                      ADECOD=="SARPOGRELATE"~"SARPO", 
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                                      ADECOD=="PLATELET AGGREGATION INHIBITOR 

(NOS)"~"PAI", 

                                      ADECOD=="TICAGRELOR"~"TICA", 

                                      ADECOD=="TICLOPIDINE HYDROCHLORIDE"~"TICLO", 

                                      ADECOD=="TICLOPIDINE"~"TICLO", 

                                      ADECOD=="TRIFLUSAL"~"TRIF", 

                                      ADECOD=="TIROFIBAN HYDROCHLORIDE"~"TIRO", 

                                      ADECOD=="TREPROSTINIL"~"TREPR",TRUE~NA_character_)) 

 

cvmedsbreak1$ADECOD<-NULL 

cvmedsbreak1$VALUE<-1 

cvmedsbreak1%<>%distinct(USUBJID,ANTIPLATE2,.keep_all=TRUE) 

cvmedsbreak1<-

reshape2::dcast(cvmedsbreak1,USUBJID~ANTIPLATE2,value.var="VALUE") 

medstable<-merge(medstable,cvmedsbreak1,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

fev<-dplyr::select(gsk_113782_adpft,USUBJID,AVISIT,PARAM,ATPT,AVAL) 

fev%<>%filter(PARAM=="% Predicted FEV1 (recalculated)") 

fev%<>%filter(ATPT=="Post-Bronchodilator") 

fev%<>%filter(AVISIT=="Baseline (Visit 2)") 

fev$AVISIT<-fev$ATPT<-fev$PARAM<-NULL 

colnames(fev)[colnames(fev)=="AVAL"]<-"FEV1" 

 

 

acm<-dplyr::select(gsk_113782_addth,USUBJID,ADY) 

acm[1,] 

acm%<>%distinct(USUBJID,ADY,.keep_all=TRUE) 

 

 

 

acm2<-dplyr::select(gsk_113782_addth,USUBJID,AVALCAT1,PARAM,ADY) 

acm2[1,] 

acm2%<>%distinct(USUBJID,AVALCAT1,.keep_all=TRUE) 
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colnames(acm2)[colnames(acm2)=="AVALCAT1"]<-"MORT_CAUSE" 

acm2%<>%filter(MORT_CAUSE=="Pulmonary"|MORT_CAUSE=="Cardiovascular"|MOR

T_CAUSE=="Cancer"|MORT_CAUSE=="Other Cause of Death") 

acm2%<>%filter(PARAM=="Primary Death Class Category") 

acm2%<>%distinct(USUBJID,ADY,.keep_all = TRUE) 

acm2$PARAM<-NULL 

 

sla<-

dplyr::select(gsk_113782_adsl,USUBJID,AGE,SEX,TRTPN,CVBL1,BMIBL,REGION,CO

UNTRY,AGEGR3,RACE,EXDUR,LSTCT,ITTFL,RANDDT,STUDEDT,PREVEXCT,SMK

BLN,IHDIN) 

sla[1,] 

colnames(sla)[colnames(sla)=="STUDEDT"]<-"COMMON_END_DATE" 

colnames(sla)[colnames(sla)=="RANDDT"]<-"RANDOMISATION_DATE" 

colnames(sla)[colnames(sla)=="EXDUR"]<-"TREATMENT_YEARS" 

colnames(sla)[colnames(sla)=="CVBL1"]<-"CV_CRITERIA" 

colnames(sla)[colnames(sla)=="BMIBL"]<-"BMI" 

colnames(sla)[colnames(sla)=="ITTFL"]<-"INTENTION_TO_TREAT" 

 

library(lubridate) 

sla%>%mutate(RANDOMISATION_DATE=ymd(RANDOMISATION_DATE),COMMON

_END_DATE=ymd(COMMON_END_DATE)) 

sla$RANDOMISATION_DATE<-as.Date(sla$RANDOMISATION_DATE) 

sla$COMMON_END_DATE<-as.Date(sla$COMMON_END_DATE) 

sla%<>%mutate(os_yrs=as.duration(RANDOMISATION_DATE%-

-%COMMON_END_DATE)/dyears(1)) 

 

 

sla$PREVEXCT[sla$PREVEXCT==""]=NA 

sla$PREVEXCT=droplevels(sla$PREVEXCT) 

 

 

#All cause mortality analysis 
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library(survival) 

library(survminer) 

a<-merge(sla,medstable,by="USUBJID",all.x=TRUE,all.y=TRUE) 

b<-merge(a,cvcrit,by="USUBJID",all.x=TRUE,all.y=TRUE) 

c<-merge(b,acm,by="USUBJID",all.x=TRUE,all.y=TRUE) 

c%<>%mutate(STATUS=case_when(LSTCT=="Alive"~0,LSTCT=="Dead"~1,TRUE~NA_

real_)) 

c$STATUS<-as.numeric(c$STATUS) 

x<-merge(c,glucose,by="USUBJID",all.x=TRUE,all.y=TRUE) 

x1<-merge(x,fev,by="USUBJID",all.x=TRUE,all.y=TRUE) 

x2<-merge(x1,cvhist,by="USUBJID",all.x=TRUE,all.y=TRUE) 

x3<-merge(x2,smoking,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

 

ACM<-x3 

colnames(ACM)[colnames(ACM)=="Alpha and beta blocking"]<-"ALPHABETABLOCK" 

colnames(ACM)[colnames(ACM)=="Angiotensin-converting Enzyme Inhibitors"]<-"ACEI" 

colnames(ACM)[colnames(ACM)=="Angiotensin receptor blockers"]<-"ARB" 

colnames(ACM)[colnames(ACM)=="Anti-coagulant therapy"]<-"ANTI_COAG" 

colnames(ACM)[colnames(ACM)=="Anti-platelet therapy"]<-"ANTI_PLATE" 

colnames(ACM)[colnames(ACM)=="Cholesterol and bile acid absorption inhibitors"]<-

"CHOL_BILE_ABSORB_INHIB" 

colnames(ACM)[colnames(ACM)=="Class III"]<-"CLASS3" 

colnames(ACM)[colnames(ACM)=="Dihydropyridine"]<-"DIHYDROPYRIDINE" 

colnames(ACM)[colnames(ACM)=="Direct Renin Inhibitors"]<-"DIR_RENIN_INHIB" 

colnames(ACM)[colnames(ACM)=="Long-acting"]<-"LONG_NITRATES" 

colnames(ACM)[colnames(ACM)=="Short-acting"]<-"SHORT_NITRATES" 

colnames(ACM)[colnames(ACM)=="Mineralocorticoid Receptor Antagonists"]<-"MRA" 

colnames(ACM)[colnames(ACM)=="Non-dihydropyridine"]<-

"NON_DIHYDROPYRIDINE" 

colnames(ACM)[colnames(ACM)=="Non-selective beta-adrenergic receptor blocker"]<-

"NON_SELEC_B_BLOCK" 

colnames(ACM)[colnames(ACM)=="Other lipid modifying"]<-"SUPPLEMENTS" 
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colnames(ACM)[colnames(ACM)=="Selective beta1-adrenergic receptor blocker"]<-

"SELEC_B_BLOCK" 

colnames(ACM)[colnames(ACM)=="Statins"]<-"STATINS" 

colnames(ACM)[colnames(ACM)=="Thiazides and Thiazide like Diuretics"]<-

"THIAZIDES_DIUR" 

colnames(ACM)[colnames(ACM)=="Being treated for diabetes mellitus"]<-"DIABETES" 

colnames(ACM)[colnames(ACM)=="Being treated for hypercholesterolemia"]<-

"HYPERCHOLESTEROL" 

colnames(ACM)[colnames(ACM)=="Being treated for hypertension"]<-"HYPERTENSION" 

colnames(ACM)[colnames(ACM)=="Diabetes mellitus with target organ disease"]<-

"DIABETES_ORGAN_DISEASE" 

colnames(ACM)[colnames(ACM)=="Diabetes mellitus with target organ disease: eyes"]<-

"DIABETES_EYES" 

colnames(ACM)[colnames(ACM)=="Being treated for peripheral arterial disease"]<-

"TREATED_FOR_PAD" 

colnames(ACM)[colnames(ACM)=="Diabetes mellitus with target organ disease: 

limbs/extremities"]<-"DIABETES_LIMBS" 

colnames(ACM)[colnames(ACM)=="Diabetes mellitus with target organ disease: kidneys"]<-

"DIABETES_KIDNEYS" 

colnames(ACM)[colnames(ACM)=="Established coronary artery disease (CAD)"]<-"CAD" 

colnames(ACM)[colnames(ACM)=="Established peripheral arterial disease (PAD)"]<-"PAD" 

colnames(ACM)[colnames(ACM)=="Previous MI"]<-"PREV_MI" 

colnames(ACM)[colnames(ACM)=="Previous stroke"]<-"PREV_STROKE" 

colnames(ACM)[colnames(ACM)=="CV risk criteria at study entry only"]<-

"CV_RISK_CRIT_ONLY" 

ACM[1,] 

 

ACM$TRTPN<-as.factor(ACM$TRTPN) 

ACM$PREV_MI<-as.factor(ACM$PREV_MI) 

ACM$PREV_STROKE<-as.factor(ACM$PREV_STROKE) 

ACM$CAD<-as.factor(ACM$CAD) 

ACM$PAD<-as.factor(ACM$PAD) 

ACM$HYPERTENSION<-as.factor(ACM$HYPERTENSION) 

ACM$HYPERCHOLESTEROL<-as.factor(ACM$HYPERCHOLESTEROL) 

ACM$TREATED_FOR_PAD<-as.factor(ACM$TREATED_FOR_PAD) 



133 

 

ACM$DIABETES_ORGAN_DISEASE<-as.factor(ACM$DIABETES_ORGAN_DISEASE) 

ACM$DIABETES_EYES<-as.factor(ACM$DIABETES_EYES) 

ACM$DIABETES_KIDNEYS<-as.factor(ACM$DIABETES_KIDNEYS) 

ACM$DIABETES_LIMBS<-as.factor(ACM$DIABETES_LIMBS) 

ACM$'Met protocol CV entry criteria'<-as.factor(ACM$'Met protocol CV entry criteria') 

ACM$'History of CV disease at study entry'<-as.factor(ACM$'History of CV disease at study 

entry') 

ACM$DIABETES<-as.factor(ACM$DIABETES) 

ACM$PREVEXCT<-as.factor(ACM$PREVEXCT) 

ACM$IHDIN<-as.factor(ACM$IHDIN) 

 

ACM%<>%mutate(ALPHABETABLOCK_1=case_when(ALPHABETABLOCK=="0"~"N"

,ALPHABETABLOCK=="1"~"Y", 

                                        

ALPHABETABLOCK=="2"~"Y",ALPHABETABLOCK=="3"~"Y", 

                                        

ALPHABETABLOCK=="4"~"Y",ALPHABETABLOCK=="5"~"Y", 

                                        

ALPHABETABLOCK=="6"~"Y",ALPHABETABLOCK=="7"~"Y",TRUE~NA_character_

)) 

 

ACM$ALPHABETABLOCK_1<-as.factor(ACM$ALPHABETABLOCK_1) 

 

ACM%<>%mutate(ACEI_1=case_when(ACEI=="0"~"N",ACEI=="1"~"Y", 

                               ACEI=="2"~"Y",ACEI=="3"~"Y", 

                               ACEI=="4"~"Y",ACEI=="5"~"Y", 

                               ACEI=="6"~"Y",ACEI=="7"~"Y", 

                               ACEI=="8"~"Y",ACEI=="9"~"Y", 

                               ACEI=="10"~"Y",ACEI=="11"~"Y", 

                               ACEI=="18"~"Y",ACEI=="19"~"Y", 

                               ACEI=="26"~"Y",TRUE~NA_character_)) 

 

ACM$ACEI_1<-as.factor(ACM$ACEI_1) 
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ACM%<>%mutate(ARB_1=case_when(ARB=="0"~"N",ARB=="1"~"Y", 

                              ARB=="2"~"Y",ARB=="3"~"Y", 

                              ARB=="4"~"Y",ARB=="5"~"Y", 

                              ARB=="6"~"Y",ARB=="7"~"Y", 

                              ARB=="8"~"Y",ARB=="9"~"Y", 

                              ARB=="10"~"Y",ARB=="11"~"Y", 

                              ARB=="12"~"Y",TRUE~NA_character_)) 

 

ACM$ARB_1<-as.factor(ACM$ARB_1) 

 

ACM%<>%mutate(ANTI_COAG_1=case_when(ANTI_COAG=="0"~"N",ANTI_COAG==

"1"~"Y", 

                                    ANTI_COAG=="2"~"Y",ANTI_COAG=="3"~"Y", 

                                    ANTI_COAG=="4"~"Y",ANTI_COAG=="5"~"Y", 

                                    ANTI_COAG=="6"~"Y",ANTI_COAG=="7"~"Y", 

                                    ANTI_COAG=="8"~"Y",ANTI_COAG=="9"~"Y", 

                                    ANTI_COAG=="10"~"Y",ANTI_COAG=="11"~"Y", 

                                    ANTI_COAG=="12"~"Y",ANTI_COAG=="13"~"Y", 

                                    

ANTI_COAG=="14"~"Y",ANTI_COAG=="19"~"Y",TRUE~NA_character_)) 

 

ACM$ANTI_COAG_1<-as.factor(ACM$ANTI_COAG_1) 

 

ACM%<>%mutate(ANTI_PLATE_1=case_when(ANTI_PLATE=="0"~"N",ANTI_PLATE

=="1"~"Y", 

                                     ANTI_PLATE=="2"~"Y",ANTI_PLATE=="3"~"Y", 

                                     ANTI_PLATE=="4"~"Y",ANTI_PLATE=="5"~"Y", 

                                     ANTI_PLATE=="6"~"Y",ANTI_PLATE=="7"~"Y", 

                                     ANTI_PLATE=="8"~"Y",ANTI_PLATE=="9"~"Y", 

                                     ANTI_PLATE=="10"~"Y",ANTI_PLATE=="11"~"Y", 

                                     

ANTI_PLATE=="12"~"Y",ANTI_PLATE=="13"~"Y",TRUE~NA_character_)) 
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ACM$ANTI_PLATE_1<-as.factor(ACM$ANTI_PLATE_1) 

 

ACM%<>%mutate(CHOL_BILE_ABSORB_INHIB_1=case_when(CHOL_BILE_ABSORB

_INHIB=="0"~"N",CHOL_BILE_ABSORB_INHIB=="1"~"Y", 

                                                 

CHOL_BILE_ABSORB_INHIB=="2"~"Y",CHOL_BILE_ABSORB_INHIB=="3"~"Y",TR

UE~NA_character_)) 

 

 

ACM$CHOL_BILE_ABSORB_INHIB_1<-

as.factor(ACM$CHOL_BILE_ABSORB_INHIB_1) 

 

ACM%<>%mutate(CLASS3_1=case_when(CLASS3=="0"~"N",CLASS3=="1"~"Y", 

                                 CLASS3=="2"~"Y",CLASS3=="3"~"Y", 

                                 CLASS3=="4"~"Y",CLASS3=="5"~"Y", 

                                 CLASS3=="6"~"Y",CLASS3=="10"~"Y",TRUE~NA_character_)) 

 

ACM$CLASS3_1<-as.factor(ACM$CLASS3_1) 

 

ACM%<>%mutate(DIHYDROPYRIDINE_1=case_when(DIHYDROPYRIDINE=="0"~"N"

,DIHYDROPYRIDINE=="1"~"Y", 

                                          

DIHYDROPYRIDINE=="2"~"Y",DIHYDROPYRIDINE=="3"~"Y", 

                                          

DIHYDROPYRIDINE=="4"~"Y",DIHYDROPYRIDINE=="5"~"Y", 

                                          

DIHYDROPYRIDINE=="6"~"Y",DIHYDROPYRIDINE=="7"~"Y", 

                                          

DIHYDROPYRIDINE=="8"~"Y",DIHYDROPYRIDINE=="9"~"Y", 

                                          DIHYDROPYRIDINE=="11"~"Y",TRUE~NA_character_)) 

 

ACM$DIHYDROPYRIDINE_1<-as.factor(ACM$DIHYDROPYRIDINE_1) 

 

ACM%<>%mutate(DIR_RENIN_INHIB_1=case_when(DIR_RENIN_INHIB=="0"~"N",DI

R_RENIN_INHIB=="1"~"Y", 

                                          DIR_RENIN_INHIB=="2"~"Y",TRUE~NA_character_)) 
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ACM$DIR_RENIN_INHIB_1<-as.factor(ACM$DIR_RENIN_INHIB_1) 

 

ACM%<>%mutate(Fibrates_1=case_when(Fibrates=="0"~"N",Fibrates=="1"~"Y", 

                                   Fibrates=="2"~"Y",Fibrates=="3"~"Y", 

                                   Fibrates=="4"~"Y",Fibrates=="5"~"Y", 

                                   Fibrates=="6"~"Y",TRUE~NA_character_)) 

 

ACM$Fibrates_1<-as.factor(ACM$Fibrates_1) 

 

ACM%<>%mutate(LONG_NITRATES_1=case_when(LONG_NITRATES=="0"~"N",LON

G_NITRATES=="1"~"Y", 

                                        LONG_NITRATES=="2"~"Y",LONG_NITRATES=="3"~"Y", 

                                        LONG_NITRATES=="4"~"Y",LONG_NITRATES=="5"~"Y", 

                                        LONG_NITRATES=="6"~"Y",TRUE~NA_character_)) 

 

ACM$LONG_NITRATES_1<-as.factor(ACM$LONG_NITRATES_1) 

 

ACM%<>%mutate(Loop_1=case_when(Loop=="0"~"N",Loop=="1"~"Y", 

                               Loop=="2"~"Y",Loop=="3"~"Y", 

                               Loop=="4"~"Y",Loop=="5"~"Y", 

                               Loop=="6"~"Y",Loop=="7"~"Y", 

                               Loop=="8"~"Y",Loop=="10"~"Y", 

                               Loop=="11"~"Y",Loop=="12"~"Y", 

                               

Loop=="13"~"Y",Loop=="21"~"Y",Loop=="24"~"Y",TRUE~NA_character_)) 

 

ACM$Loop_1<-as.factor(ACM$Loop_1) 

 

ACM%<>%mutate(MRA_1=case_when(MRA=="0"~"N",MRA=="1"~"Y", 

                              MRA=="2"~"Y",MRA=="3"~"Y", 

                              MRA=="4"~"Y",MRA=="5"~"Y", 

                              MRA=="6"~"Y",TRUE~NA_character_)) 
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ACM$MRA_1<-as.factor(ACM$MRA_1) 

 

ACM%<>%mutate(NON_DIHYDROPYRIDINE_1=case_when(NON_DIHYDROPYRIDI

NE=="0"~"N",NON_DIHYDROPYRIDINE=="1"~"Y", 

                                              

NON_DIHYDROPYRIDINE=="2"~"Y",NON_DIHYDROPYRIDINE=="3"~"Y", 

                                              

NON_DIHYDROPYRIDINE=="4"~"Y",NON_DIHYDROPYRIDINE=="5"~"Y", 

                                              

NON_DIHYDROPYRIDINE=="6"~"Y",NON_DIHYDROPYRIDINE=="10"~"Y", 

                                              

NON_DIHYDROPYRIDINE=="12"~"Y",TRUE~NA_character_)) 

 

ACM$NON_DIHYDROPYRIDINE_1<-as.factor(ACM$NON_DIHYDROPYRIDINE_1) 

 

ACM%<>%mutate(NON_SELEC_B_BLOCK_1=case_when(NON_SELEC_B_BLOCK=="

0"~"N",NON_SELEC_B_BLOCK=="1"~"Y", 

                                            

NON_SELEC_B_BLOCK=="2"~"Y",NON_SELEC_B_BLOCK=="3"~"Y", 

                                            

NON_SELEC_B_BLOCK=="4"~"Y",NON_SELEC_B_BLOCK=="7"~"Y",TRUE~NA_cha

racter_)) 

 

 

ACM$NON_SELEC_B_BLOCK_1<-as.factor(ACM$NON_SELEC_B_BLOCK_1) 

 

ACM%<>%mutate(SELEC_B_BLOCK_1=case_when(SELEC_B_BLOCK=="0"~"N",SEL

EC_B_BLOCK=="1"~"Y", 

                                        SELEC_B_BLOCK=="2"~"Y",SELEC_B_BLOCK=="3"~"Y", 

                                        SELEC_B_BLOCK=="4"~"Y",SELEC_B_BLOCK=="5"~"Y", 

                                        SELEC_B_BLOCK=="6"~"Y",SELEC_B_BLOCK=="7"~"Y", 

                                        SELEC_B_BLOCK=="8"~"Y",SELEC_B_BLOCK=="9"~"Y", 

                                        SELEC_B_BLOCK=="10"~"Y",TRUE~NA_character_)) 

 

ACM$SELEC_B_BLOCK_1<-as.factor(ACM$SELEC_B_BLOCK_1) 
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ACM%<>%mutate(SHORT_NITRATES_1=case_when(SHORT_NITRATES=="0"~"N",S

HORT_NITRATES=="1"~"Y", 

                                         SHORT_NITRATES=="2"~"Y",SHORT_NITRATES=="3"~"Y", 

                                         SHORT_NITRATES=="4"~"Y",SHORT_NITRATES=="5"~"Y", 

                                         SHORT_NITRATES=="6"~"Y",SHORT_NITRATES=="8"~"Y", 

                                         SHORT_NITRATES=="9"~"Y",TRUE~NA_character_)) 

 

ACM$SHORT_NITRATES_1<-as.factor(ACM$SHORT_NITRATES_1) 

 

ACM%<>%mutate(STATINS_1=case_when(STATINS=="0"~"N",STATINS=="1"~"Y", 

                                  STATINS=="2"~"Y",STATINS=="3"~"Y", 

                                  STATINS=="4"~"Y",STATINS=="5"~"Y", 

                                  STATINS=="6"~"Y",STATINS=="7"~"Y", 

                                  STATINS=="8"~"Y",STATINS=="9"~"Y", 

                                  STATINS=="10"~"Y",STATINS=="12"~"Y",TRUE~NA_character_)) 

 

ACM$STATINS_1<-as.factor(ACM$STATINS_1) 

 

ACM%<>%mutate(THIAZIDES_DIUR_1=case_when(THIAZIDES_DIUR=="0"~"N",THI

AZIDES_DIUR=="1"~"Y", 

                                         THIAZIDES_DIUR=="2"~"Y",THIAZIDES_DIUR=="3"~"Y", 

                                         THIAZIDES_DIUR=="4"~"Y",THIAZIDES_DIUR=="5"~"Y", 

                                         THIAZIDES_DIUR=="6"~"Y",THIAZIDES_DIUR=="10"~"Y", 

                                         THIAZIDES_DIUR=="11"~"Y",TRUE~NA_character_)) 

 

ACM$THIAZIDES_DIUR_1<-as.factor(ACM$THIAZIDES_DIUR_1) 

 

ACM%<>%mutate(BIGUANIDES_1=case_when(BIGUANIDES=="0"~"N",BIGUANIDES

=="1"~"Y",TRUE~NA_character_)) 

 

ACM$BIGUANIDES_1<-as.factor(ACM$BIGUANIDES_1) 
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ACM%<>%mutate(DPP4_1=case_when(DPP4=="0"~"N",DPP4=="1"~"Y",DPP4=="2"~"Y

",DPP4=="3"~"Y",TRUE~NA_character_)) 

 

ACM$DPP4_1<-as.factor(ACM$DPP4_1) 

 

ACM%<>%mutate(DPP4_BIGUANIDES_1=case_when(DPP4_BIGUANIDES=="0"~"N",

DPP4_BIGUANIDES=="1"~"Y",TRUE~NA_character_)) 

 

ACM$DPP4_BIGUANIDES_1<-as.factor(ACM$DPP4_BIGUANIDES_1) 

 

ACM%<>%mutate(GLPR_AGONIST_1=case_when(GLPR_AGONIST=="0"~"N",GLPR_

AGONIST=="1"~"Y",GLPR_AGONIST=="2"~"Y",TRUE~NA_character_)) 

 

ACM$GLPR_AGONIST_1<-as.factor(ACM$GLPR_AGONIST_1) 

 

ACM%<>%mutate(GLUCOSIDASE_INHIB_1=case_when(GLUCOSIDASE_INHIB=="0"

~"N",GLUCOSIDASE_INHIB=="1"~"Y",GLUCOSIDASE_INHIB=="2"~"Y",GLUCOSID

ASE_INHIB=="3"~"Y",TRUE~NA_character_)) 

 

ACM$GLUCOSIDASE_INHIB_1<-as.factor(ACM$GLUCOSIDASE_INHIB_1) 

 

ACM%<>%mutate(INSULINS_1=case_when(INSULINS=="0"~"N",INSULINS=="1"~"Y", 

                                   INSULINS=="2"~"Y",INSULINS=="3"~"Y", 

                                   INSULINS=="4"~"Y",INSULINS=="5"~"Y", 

                                   INSULINS=="6"~"Y",TRUE~NA_character_)) 

 

ACM$INSULINS_1<-as.factor(ACM$INSULINS_1) 

 

ACM%<>%mutate(MEGLITINIDES_1=case_when(MEGLITINIDES=="0"~"N",MEGLITI

NIDES=="1"~"Y",TRUE~NA_character_)) 

 

ACM$MEGLITINIDES_1<-as.factor(ACM$MEGLITINIDES_1) 
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ACM%<>%mutate(SODIUM_TRANSPORT_INHIB_1=case_when(SODIUM_TRANSPO

RT_INHIB=="0"~"N",SODIUM_TRANSPORT_INHIB=="1"~"Y",TRUE~NA_character_)) 

 

ACM$SODIUM_TRANSPORT_INHIB_1<-

as.factor(ACM$SODIUM_TRANSPORT_INHIB_1) 

 

ACM%<>%mutate(SULFONYLUREAS_1=case_when(SULFONYLUREAS=="0"~"N",SU

LFONYLUREAS=="1"~"Y",SULFONYLUREAS=="2"~"Y",SULFONYLUREAS=="3"~"

Y",TRUE~NA_character_)) 

 

ACM$SULFONYLUREAS_1<-as.factor(ACM$SULFONYLUREAS_1) 

 

ACM%<>%mutate(SULFONYLUREAS_BIGUANIDES_1=case_when(SULFONYLUREA

S_BIGUANIDES=="0"~"N",SULFONYLUREAS_BIGUANIDES=="1"~"Y",TRUE~NA_c

haracter_)) 

 

ACM$SULFONYLUREAS_BIGUANIDES_1<-

as.factor(ACM$SULFONYLUREAS_BIGUANIDES_1) 

 

ACM%<>%mutate(THIAZOLIDINEDIONE_1=case_when(THIAZOLIDINEDIONE=="0"

~"N",THIAZOLIDINEDIONE=="1"~"Y",TRUE~NA_character_)) 

 

ACM$THIAZOLIDINEDIONE_1<-as.factor(ACM$THIAZOLIDINEDIONE_1) 

 

 

 

ACM%<>%mutate(ATENOLOL_1=case_when(ATENOLOL=="1"~"Y",TRUE~NA_charac

ter_)) 

 

ACM$ATENOLOL_1<-as.factor(ACM$ATENOLOL_1) 

 

fct_explicit_na(ACM$ATENOLOL_1,na_level="N") 

ACM%<>%mutate(ATENOLOL_1=fct_explicit_na(ATENOLOL_1,na_level="N")) 

 

ACM%<>%mutate(BISOPROLOL_1=case_when(BISOPROLOL=="1"~"Y",TRUE~NA_ch

aracter_)) 
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ACM$BISOPROLOL_1<-as.factor(ACM$BISOPROLOL_1) 

 

fct_explicit_na(ACM$BISOPROLOL_1,na_level="N") 

ACM%<>%mutate(BISOPROLOL_1=fct_explicit_na(BISOPROLOL_1,na_level="N")) 

 

 

ACM%<>%mutate(CLOPIDOGREL_1=case_when(CLOPIDOGREL=="1"~"Y",TRUE~N

A_character_)) 

 

ACM$CLOPIDOGREL_1<-as.factor(ACM$CLOPIDOGREL_1) 

 

fct_explicit_na(ACM$CLOPIDOGREL_1,na_level="N") 

ACM%<>%mutate(CLOPIDOGREL_1=fct_explicit_na(CLOPIDOGREL_1,na_level="N")) 

 

 

ACM%<>%mutate(NEBIVOLOL_1=case_when(NEBIVOLOL=="1"~"Y",TRUE~NA_char

acter_)) 

 

ACM$NEBIVOLOL_1<-as.factor(ACM$NEBIVOLOL_1) 

 

fct_explicit_na(ACM$NEBIVOLOL_1,na_level="N") 

ACM%<>%mutate(NEBIVOLOL_1=fct_explicit_na(NEBIVOLOL_1,na_level="N")) 

 

 

 

ACM%<>%mutate(ASP_CLOPIDOGREL_1=case_when(ASP_CLOPIDOGREL=="1"~"Y"

,TRUE~NA_character_)) 

 

ACM$ASP_CLOPIDOGREL_1<-as.factor(ACM$ASP_CLOPIDOGREL_1) 

 

fct_explicit_na(ACM$ASP_CLOPIDOGREL_1,na_level="N") 
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ACM%<>%mutate(ASP_CLOPIDOGREL_1=fct_explicit_na(ASP_CLOPIDOGREL_1,na_l

evel="N")) 

 

 

ACM%<>%mutate(ASP_STAT_CLOPIDOGREL_1=case_when(ASP_STAT_CLOPIDOG

REL=="1"~"Y",TRUE~NA_character_)) 

 

ACM$ASP_STAT_CLOPIDOGREL_1<-as.factor(ACM$ASP_STAT_CLOPIDOGREL_1) 

 

fct_explicit_na(ACM$ASP_STAT_CLOPIDOGREL_1,na_level="N") 

ACM%<>%mutate(ASP_STAT_CLOPIDOGREL_1=fct_explicit_na(ASP_STAT_CLOPID

OGREL_1,na_level="N")) 

 

 

ACM%<>%mutate(STAT_CLOPIDOGREL_1=case_when(STAT_CLOPIDOGREL=="1"~

"Y",TRUE~NA_character_)) 

 

ACM$STAT_CLOPIDOGREL_1<-as.factor(ACM$STAT_CLOPIDOGREL_1) 

 

fct_explicit_na(ACM$STAT_CLOPIDOGREL_1,na_level="N") 

ACM%<>%mutate(STAT_CLOPIDOGREL_1=fct_explicit_na(STAT_CLOPIDOGREL_1,

na_level="N")) 

 

 

 

 

 

ACM$ASPIRIN[is.na(ACM$ASPIRIN)]<-0 

ACM$ABCIXIMAB[is.na(ACM$ABCIXIMAB)]<-0 

ACM$ASPDIP[is.na(ACM$ASPDIP)]<-0 

ACM$CARB[is.na(ACM$CARB)]<-0 

ACM$DIP[is.na(ACM$DIP)]<-0 

ACM$ETHICO[is.na(ACM$ETHICO)]<-0 

ACM$ILO[is.na(ACM$ILO)]<-0 
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ACM$ICO[is.na(ACM$ICO)]<-0 

ACM$MESOGLYCAN[is.na(ACM$MESOGLYCAN)]<-0 

ACM$OZAGREL[is.na(ACM$OZAGREL)]<-0 

ACM$SARPO[is.na(ACM$SARPO)]<-0 

ACM$PRAS[is.na(ACM$PRAS)]<-0 

ACM$PAI[is.na(ACM$PAI)]<-0 

ACM$TICA[is.na(ACM$TICA)]<-0 

ACM$TICLO[is.na(ACM$TICLO)]<-0 

ACM$TRIF[is.na(ACM$TRIF)]<-0 

ACM$TIRO[is.na(ACM$TIRO)]<-0 

ACM$TREPR[is.na(ACM$TREPR)]<-0 

 

ACM%<>%distinct(USUBJID,INTENTION_TO_TREAT,.keep_all=TRUE) 

 

library(forcats) 

 

ACM$DIABETES<-as.factor(ACM$DIABETES) 

fct_explicit_na(ACM$DIABETES,na_level="N") 

ACM%<>%mutate(DIABETES=fct_explicit_na(DIABETES,na_level="N")) 

 

fct_explicit_na(ACM$HYPERTENSION,na_level="N") 

ACM%<>%mutate(HYPERTENSION=fct_explicit_na(HYPERTENSION,na_level="N")) 

 

fct_explicit_na(ACM$HYPERCHOLESTEROL,na_level="N") 

ACM%<>%mutate(HYPERCHOLESTEROL=fct_explicit_na(HYPERCHOLESTEROL,na_

level="N")) 

 

fct_explicit_na(ACM$PAD,na_level="N") 

ACM%<>%mutate(PAD=fct_explicit_na(PAD,na_level="N")) 

 

fct_explicit_na(ACM$CAD,na_level="N") 

ACM%<>%mutate(CAD=fct_explicit_na(CAD,na_level="N")) 
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fct_explicit_na(ACM$PREV_MI,na_level="N") 

ACM%<>%mutate(PREV_MI=fct_explicit_na(PREV_MI,na_level="N")) 

 

fct_explicit_na(ACM$PREV_STROKE,na_level="N") 

ACM%<>%mutate(PREV_STROKE=fct_explicit_na(PREV_STROKE,na_level="N")) 

 

 

ACM$STATUS[ACM$USUBJID=="1566"]<-0 

ACM$STATUS[ACM$USUBJID=="2286"]<-0 

ACM$STATUS[ACM$USUBJID=="2818"]<-0 

ACM$STATUS[ACM$USUBJID=="4268"]<-0 

ACM$STATUS[ACM$USUBJID=="4270"]<-0 

ACM$STATUS[ACM$USUBJID=="4756"]<-0 

ACM$STATUS[ACM$USUBJID=="5510"]<-0 

ACM$STATUS[ACM$USUBJID=="6357"]<-0 

ACM$STATUS[ACM$USUBJID=="7158"]<-0 

ACM$STATUS[ACM$USUBJID=="9228"]<-0 

ACM$STATUS[ACM$USUBJID=="11341"]<-0 

ACM$STATUS[ACM$USUBJID=="12034"]<-0 

ACM$STATUS[ACM$USUBJID=="13051"]<-0 

ACM$STATUS[ACM$USUBJID=="15420"]<-0 

ACM$STATUS[ACM$USUBJID=="15534"]<-0 

ACM$STATUS[ACM$USUBJID=="15864"]<-0 

ACM$STATUS[ACM$USUBJID=="15890"]<-0 

ACM$STATUS[ACM$USUBJID=="16259"]<-0 

ACM$STATUS[ACM$USUBJID=="16684"]<-0 

ACM$STATUS[ACM$USUBJID=="20248"]<-0 

ACM$STATUS[ACM$USUBJID=="21795"]<-0 

ACM$STATUS[ACM$USUBJID=="22794"]<-0 

ACM$STATUS[ACM$USUBJID=="22891"]<-0 

ACM$STATUS[ACM$USUBJID=="23321"]<-0 
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ACM%<>%distinct(USUBJID,BMI,.keep_all=TRUE) 

 

ACM%<>%mutate(RACE_CODE=case_when(RACE=="AMERICAN INDIAN OR 

ALASKA NATIVE"~"OTHER", 

                                       RACE=="ASIAN"~"ASIAN", 

                                       RACE=="BLACK OR AFRICAN AMERICAN"~"OTHER", 

                                       RACE=="MULTIPLE"~"OTHER", 

                                       RACE=="NATIVE HAWAIIAN OR OTHER PACIFIC 

ISLANDER"~"OTHER", 

                                       RACE=="WHITE"~"WHITE",TRUE~NA_character_)) 

 

ACM$RACE_CODE<-as.character(ACM$RACE_CODE) 

ACM$PREVEXCT<-as.factor(ACM$PREVEXCT) 

ACM$SMKBLN<-as.factor(ACM$SMKBLN) 

ACM$HYPERTENSION<-relevel(ACM$HYPERTENSION,ref="N") 

 

ACM$PREVEXCT<-relevel(ACM$PREVEXCT,ref="0") 

 

ACM$SMKBLN<-relevel(ACM$SMKBLN,ref="2") 

 

ACM$HYPERCHOLESTEROL<-relevel(ACM$HYPERCHOLESTEROL,ref="N") 

 

ACM$PAD<-relevel(ACM$PAD,ref="N") 

 

ACM$CAD<-relevel(ACM$CAD,ref="N") 

 

ACM$PREV_MI<-relevel(ACM$PREV_MI,ref="N") 

 

ACM$PREV_STROKE<-relevel(ACM$PREV_STROKE,ref="N") 

 

ACM$DIABETES<-relevel(ACM$DIABETES,ref="N") 
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ACM$ATENOLOL_1<-relevel(ACM$ATENOLOL_1,ref="N") 

 

ACM$BISOPROLOL_1<-relevel(ACM$BISOPROLOL_1,ref="N") 

 

ACM$NEBIVOLOL_1<-relevel(ACM$NEBIVOLOL_1,ref="N") 

 

ACM$CLOPIDOGREL_1<-relevel(ACM$CLOPIDOGREL_1,ref="N") 

 

ACM$ASPIRIN<-as.factor(ACM$ASPIRIN) 

ACM$ASPIRIN<-relevel(ACM$ASPIRIN,ref="0") 

 

ACM%<>%mutate(os.days=ACM$os_yrs*365.25) 

ACM$os.days<-as.integer(ACM$os.days) 

ACM%<>%mutate(ADY_FULL=case_when(os.days>ADY~ADY,TRUE~os.days)) 

 

 

ACM$BB_1<-paste(ACM$SELEC_B_BLOCK_1,ACM$NON_SELEC_B_BLOCK_1) 

 

ACM%<>%mutate(BB_2=case_when(BB_1=="N N"~"N",BB_1=="N Y"~"Y", 

                             BB_1=="Y N"~"Y",BB_1=="Y Y"~"Y",TRUE~NA_character_)) 

 

ACM$BB_2<-as.factor(ACM$BB_2) 

 

ACM$ACEIARB_1<-paste(ACM$ACEI_1,ACM$ARB_1) 

 

ACM%<>%mutate(ACEIARB_2=case_when(ACEIARB_1=="N 

N"~"N",ACEIARB_1=="N Y"~"Y", 

                                  ACEIARB_1=="Y N"~"Y",ACEIARB_1=="Y 

Y"~"Y",TRUE~NA_character_)) 

 

ACM$ACEIARB_2<-as.factor(ACM$ACEIARB_2) 
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ACM$IHD_CAD<-paste(ACM$IHDIN,ACM$CAD) 

 

ACM%<>%mutate(IHD_CAD_1=case_when(IHD_CAD=="0 N"~"N",IHD_CAD=="0 

Y"~"Y", 

                                  IHD_CAD=="1 N"~"Y",IHD_CAD=="1 

Y"~"Y",TRUE~NA_character_)) 

 

ACM$IHD_CAD_1<-as.factor(ACM$IHD_CAD_1) 

 

 

fct_explicit_na(ACM$ACEIARB_2,na_level="N") 

ACM%<>%mutate(ACEIARB_2=fct_explicit_na(ACEIARB_2,na_level="N")) 

 

fct_explicit_na(ACM$BB_2,na_level="N") 

ACM%<>%mutate(BB_2=fct_explicit_na(BB_2,na_level="N")) 

 

fct_explicit_na(ACM$ANTI_COAG_1,na_level="N") 

ACM%<>%mutate(ANTI_COAG_1=fct_explicit_na(ANTI_COAG_1,na_level="N")) 

 

fct_explicit_na(ACM$ANTI_PLATE_1,na_level="N") 

ACM%<>%mutate(ANTI_PLATE_1=fct_explicit_na(ANTI_PLATE_1,na_level="N")) 

 

fct_explicit_na(ACM$DIHYDROPYRIDINE_1,na_level="N") 

ACM%<>%mutate(DIHYDROPYRIDINE_1=fct_explicit_na(DIHYDROPYRIDINE_1,na_l

evel="N")) 

 

fct_explicit_na(ACM$LONG_NITRATES_1,na_level="N") 

ACM%<>%mutate(LONG_NITRATES_1=fct_explicit_na(LONG_NITRATES_1,na_level=

"N")) 

 

fct_explicit_na(ACM$Loop_1,na_level="N") 

ACM%<>%mutate(Loop_1=fct_explicit_na(Loop_1,na_level="N")) 
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fct_explicit_na(ACM$NON_DIHYDROPYRIDINE_1,na_level="N") 

ACM%<>%mutate(NON_DIHYDROPYRIDINE_1=fct_explicit_na(NON_DIHYDROPYRI

DINE_1,na_level="N")) 

 

fct_explicit_na(ACM$STATINS_1,na_level="N") 

ACM%<>%mutate(STATINS_1=fct_explicit_na(STATINS_1,na_level="N")) 

 

fct_explicit_na(ACM$THIAZIDES_DIUR_1,na_level="N") 

ACM%<>%mutate(THIAZIDES_DIUR_1=fct_explicit_na(THIAZIDES_DIUR_1,na_level=

"N")) 

 

fct_explicit_na(ACM$BIGUANIDES_1,na_level="N") 

ACM%<>%mutate(BIGUANIDES_1=fct_explicit_na(BIGUANIDES_1,na_level="N")) 

 

fct_explicit_na(ACM$INSULINS_1,na_level="N") 

ACM%<>%mutate(INSULINS_1=fct_explicit_na(INSULINS_1,na_level="N")) 

 

 

fct_explicit_na(ACM$SULFONYLUREAS_1,na_level="N") 

ACM%<>%mutate(SULFONYLUREAS_1=fct_explicit_na(SULFONYLUREAS_1,na_leve

l="N")) 

 

 

 

ACM$CV_RISK_CRIT_ONLY<-as.factor(ACM$CV_RISK_CRIT_ONLY) 

 

ACM$ASPCLOP<-paste(ACM$ASPIRIN_1,ACM$CLOPIDOGREL_1) 

 

ACM%<>%mutate(ASPCLOPCOMBO=case_when(ASPCLOP=="N 

N"~"N",ASPCLOP=="N Y"~"N", 

                                     ASPCLOP=="Y N"~"N",ASPCLOP=="Y 

Y"~"Y",TRUE~NA_character_)) 

 

ACM$ASPCLOPCOMBO<-as.factor(ACM$ASPCLOPCOMBO) 
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ACM$CV_CRITERIA<-ACM$RACE<-ACM$SITEID<-ACM$LSTCT<-

ACM$TREATMENT_YEARS<-ACM$os_yrs<-ACM$ALPHABETABLOCK<-NULL 

ACM$ACEI<-ACM$ARB<-ACM$ANTI_COAG<-ACM$ANTI_PLATE<-

ACM$CHOL_BILE_ABSORB_INHIB<-ACM$CLASS3<-NULL 

ACM$DIHYDROPYRIDINE<-ACM$DIR_RENIN_INHIB<-ACM$Fibrates<-

ACM$LONG_NITRATES<-ACM$Loop<-ACM$MRA<-NULL 

ACM$Niacin<-ACM$NON_DIHYDROPYRIDINE<-ACM$NON_SELEC_B_BLOCK<-

ACM$Other<-ACM$SUPPLEMENTS<-ACM$SELEC_B_BLOCK<-NULL 

ACM$SHORT_NITRATES<-ACM$STATINS<-ACM$THIAZIDES_DIUR<-

ACM$NA.x<-ACM$BIGUANIDES<-ACM$DPP4<-ACM$DPP4_BIGUANIDES<-NULL 

ACM$GLPR_AGONIST<-ACM$GLUCOSIDASE_INHIB<-ACM$INSULINS<-

ACM$MEGLITINIDES<-ACM$OTHER<-ACM$SODIUM_TRANSPORT_INHIB<-

NULL 

ACM$SULFONYLUREAS<-ACM$SULFONYLUREAS_BIGUANIDES<-

ACM$THIAZOLIDINEDIONE<-ACM$NA.y<-ACM$TREATED_FOR_PAD<-NULL 

ACM$`CV risk criteria at study entry`<-ACM$DIABETES_ORGAN_DISEASE<-

ACM$DIABETES_EYES<-ACM$DIABETES_KIDNEYS<-NULL 

ACM$DIABETES_LIMBS<-ACM$`History of CV disease at study entry`<-ACM$`Met 

protocol CV entry criteria`<-NULL 

ACM$GLUC_CAT<-ACM$BB_1<-ACM$ACEIARB_1<-NULL 

ACM$ATENOLOL<-ACM$BISOPROLOL<-ACM$CLOPIDOGREL<-

ACM$NEBIVOLOL<-NULL 

ACM$ASP_BISOPROLOL<-ACM$ASP_CLOPIDOGREL<-

ACM$STAT_CLOPIDOGREL<-ACM$ASP_STAT_CLOPIDOGREL<-NULL 

ACM$ASPCLOP<-ACM$IHD_CAD<-NULL 

 

ACM$STATUS<-as.factor(ACM$STATUS) 

 

ACM_TABLE<-

tableby(~AGE+SEX+TRTPN+BMI+SMKBLN+PACK_YRS+RACE_CODE+DIABETES+ 

                     

HYPERCHOLESTEROL+PAD+CAD+HYPERTENSION+PREV_MI+PREV_STROKE+ 

                     

ALPHABETABLOCK_1+ACEI_1+ARB_1+ANTI_PLATE_1+ANTI_COAG_1+ 
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CHOL_BILE_ABSORB_INHIB_1+CLASS3_1+DIHYDROPYRIDINE_1+DIR_RENIN_I

NHIB_1+ 

                     

Fibrates_1+LONG_NITRATES_1+Loop_1+MRA_1+NON_DIHYDROPYRIDINE_1+ 

                     

NON_SELEC_B_BLOCK_1+SELEC_B_BLOCK_1+ACEIARB_2+BB_2+SHORT_NITR

ATES_1+ 

                     

STATINS_1+THIAZIDES_DIUR_1+BIGUANIDES_1+DPP4_1+GLPR_AGONIST_1+ 

                     

GLUCOSIDASE_INHIB_1+INSULINS_1+MEGLITINIDES_1+SULFONYLUREAS_1+ 

                     

THIAZOLIDINEDIONE_1+DPP4_BIGUANIDES_1+SODIUM_TRANSPORT_INHIB_1+ 

                     

SULFONYLUREAS_BIGUANIDES_1+STATUS+GLUCOSE+PREVEXCT+ADY+FEV1+ 

                     

CV_RISK_CRIT_ONLY+IHDIN+HF+IHD_CAD_1+ATENOLOL_1+BISOPROLOL_1+ 

                     

NEBIVOLOL_1+CLOPIDOGREL_1+ASPIRIN,data=subset(ACM,INTENTION_TO_TRE

AT=="Y"))  

 

summary(ACM_TABLE,title="ACM_TABLE") 

 

ACM$STATUS<-as.numeric(ACM$STATUS) 

ACM%<>%mutate(STATUS=case_when(STATUS=="1"~0,STATUS=="2"~1,TRUE~NA_

real_)) 

 

coxph(Surv(ADY_FULL,STATUS)~AGE+SEX+BMI+SMKBLN+FEV1+PACK_YRS+PA

D+PREV_STROKE+IHD_CAD_1+HF+HYPERTENSION+HYPERCHOLESTEROL+ 

        DIABETES+ASPIRIN, 

      

data=subset(ACM,INTENTION_TO_TREAT=="Y"&ASP_STAT_CLOPIDOGREL_1=="N

"& 

                    

ASP_CLOPIDOGREL_1=="N"&STAT_CLOPIDOGREL_1=="N"&CLOPIDOGREL_1=="

N"& 

                    

ABCIXIMAB=="0"&ASPDIP=="0"&CARB=="0"&DIP=="0"&ETHICO=="0"& 
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                    ILO=="0"&ICO=="0"&MESOGLYCAN=="0"&OZAGREL=="0"& 

                    SARPO=="0"&PRAS=="0"&PAI=="0"&TICA=="0"&TICLO=="0"& 

                    

TRIF=="0"&TIRO=="0"&TREPR=="0"))%>%gtsummary::tbl_regression(exp=TRUE) 

 

 

 

 

 

#CV composite events 

 

cvcompevents[1,] 

colnames(cvcompevents)[colnames(cvcompevents)=="LSTCT"]<-"STATUS_CV" 

colnames(cvcompevents)[colnames(cvcompevents)=="ADY"]<-"ADY_CV" 

colnames(cvcompevents)[colnames(cvcompevents)=="ADT"]<-"ADT_CV" 

 

a<-merge(sla,medstable,by="USUBJID",all.x=TRUE,all.y=TRUE) 

b<-merge(a,cvcrit,by="USUBJID",all.x=TRUE,all.y=TRUE) 

d<-merge(b,cvcompevents,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

#KEEP FIRST CV EVENT ONLY 

 

d=d[order(d[,'USUBJID'],d[,'ADY_CV']),] 

d=d[!duplicated(d$USUBJID),] 

 

d%<>%mutate(CVSTATUS=ADY_CV) 

d$CVSTATUS[d$CVSTATUS>0]<-1 

d$CVSTATUS[is.na(d$CVSTATUS)]<-0 

 

t<-merge(d,glucose,by="USUBJID",all.x=TRUE,all.y=TRUE) 

t1<-merge(t,fev,by="USUBJID",all.x=TRUE,all.y=TRUE) 

t2<-merge(t1,cvhist,by="USUBJID",all.x=TRUE,all.y=TRUE) 
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t3<-merge(t2,smoking,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

CVCOMP<-t3 

 

 

colnames(CVCOMP)[colnames(CVCOMP)=="Alpha and beta blocking"]<-

"ALPHABETABLOCK" 

colnames(CVCOMP)[colnames(CVCOMP)=="Angiotensin-converting Enzyme 

Inhibitors"]<-"ACEI" 

colnames(CVCOMP)[colnames(CVCOMP)=="Angiotensin receptor blockers"]<-"ARB" 

colnames(CVCOMP)[colnames(CVCOMP)=="Anti-coagulant therapy"]<-"ANTI_COAG" 

colnames(CVCOMP)[colnames(CVCOMP)=="Anti-platelet therapy"]<-"ANTI_PLATE" 

colnames(CVCOMP)[colnames(CVCOMP)=="Cholesterol and bile acid absorption 

inhibitors"]<-"CHOL_BILE_ABSORB_INHIB" 

colnames(CVCOMP)[colnames(CVCOMP)=="Class III"]<-"CLASS3" 

colnames(CVCOMP)[colnames(CVCOMP)=="Dihydropyridine"]<-"DIHYDROPYRIDINE" 

colnames(CVCOMP)[colnames(CVCOMP)=="Direct Renin Inhibitors"]<-

"DIR_RENIN_INHIB" 

colnames(CVCOMP)[colnames(CVCOMP)=="Long-acting"]<-"LONG_NITRATES" 

colnames(CVCOMP)[colnames(CVCOMP)=="Short-acting"]<-"SHORT_NITRATES" 

colnames(CVCOMP)[colnames(CVCOMP)=="Mineralocorticoid Receptor Antagonists"]<-

"MRA" 

colnames(CVCOMP)[colnames(CVCOMP)=="Non-dihydropyridine"]<-

"NON_DIHYDROPYRIDINE" 

colnames(CVCOMP)[colnames(CVCOMP)=="Non-selective beta-adrenergic receptor 

blocker"]<-"NON_SELEC_B_BLOCK" 

colnames(CVCOMP)[colnames(CVCOMP)=="Other lipid modifying"]<-"SUPPLEMENTS" 

colnames(CVCOMP)[colnames(CVCOMP)=="Selective beta1-adrenergic receptor 

blocker"]<-"SELEC_B_BLOCK" 

colnames(CVCOMP)[colnames(CVCOMP)=="Statins"]<-"STATINS" 

colnames(CVCOMP)[colnames(CVCOMP)=="Thiazides and Thiazide like Diuretics"]<-

"THIAZIDES_DIUR" 

colnames(CVCOMP)[colnames(CVCOMP)=="Being treated for diabetes mellitus"]<-

"DIABETES" 

colnames(CVCOMP)[colnames(CVCOMP)=="Being treated for hypercholesterolemia"]<-

"HYPERCHOLESTEROL" 
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colnames(CVCOMP)[colnames(CVCOMP)=="Being treated for hypertension"]<-

"HYPERTENSION" 

colnames(CVCOMP)[colnames(CVCOMP)=="Diabetes mellitus with target organ 

disease"]<-"DIABETES_ORGAN_DISEASE" 

colnames(CVCOMP)[colnames(CVCOMP)=="Diabetes mellitus with target organ disease: 

eyes"]<-"DIABETES_EYES" 

colnames(CVCOMP)[colnames(CVCOMP)=="Being treated for peripheral arterial 

disease"]<-"TREATED_FOR_PAD" 

colnames(CVCOMP)[colnames(CVCOMP)=="Diabetes mellitus with target organ disease: 

limbs/extremities"]<-"DIABETES_LIMBS" 

colnames(CVCOMP)[colnames(CVCOMP)=="Diabetes mellitus with target organ disease: 

kidneys"]<-"DIABETES_KIDNEYS" 

colnames(CVCOMP)[colnames(CVCOMP)=="Established coronary artery disease 

(CAD)"]<-"CAD" 

colnames(CVCOMP)[colnames(CVCOMP)=="Established peripheral arterial disease 

(PAD)"]<-"PAD" 

colnames(CVCOMP)[colnames(CVCOMP)=="Previous MI"]<-"PREV_MI" 

colnames(CVCOMP)[colnames(CVCOMP)=="Previous stroke"]<-"PREV_STROKE" 

colnames(CVCOMP)[colnames(CVCOMP)=="CV risk criteria at study entry only"]<-

"CV_RISK_CRIT_ONLY" 

 

 

CVCOMP$TRTPN<-as.factor(CVCOMP$TRTPN) 

CVCOMP$PREV_MI<-as.factor(CVCOMP$PREV_MI) 

CVCOMP$PREV_STROKE<-as.factor(CVCOMP$PREV_STROKE) 

CVCOMP$CAD<-as.factor(CVCOMP$CAD) 

CVCOMP$PAD<-as.factor(CVCOMP$PAD) 

CVCOMP$HYPERTENSION<-as.factor(CVCOMP$HYPERTENSION) 

CVCOMP$HYPERCHOLESTEROL<-as.factor(CVCOMP$HYPERCHOLESTEROL) 

CVCOMP$TREATED_FOR_PAD<-as.factor(CVCOMP$TREATED_FOR_PAD) 

CVCOMP$DIABETES_ORGAN_DISEASE<-

as.factor(CVCOMP$DIABETES_ORGAN_DISEASE) 

CVCOMP$DIABETES_EYES<-as.factor(CVCOMP$DIABETES_EYES) 

CVCOMP$DIABETES_KIDNEYS<-as.factor(CVCOMP$DIABETES_KIDNEYS) 

CVCOMP$DIABETES_LIMBS<-as.factor(CVCOMP$DIABETES_LIMBS) 
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CVCOMP$'Met protocol CV entry criteria'<-as.factor(CVCOMP$'Met protocol CV entry 

criteria') 

CVCOMP$'History of CV disease at study entry'<-as.factor(CVCOMP$'History of CV disease 

at study entry') 

CVCOMP$DIABETES<-as.factor(CVCOMP$DIABETES) 

CVCOMP$CV_RISK_CRIT_ONLY<-as.factor(CVCOMP$CV_RISK_CRIT_ONLY) 

CVCOMP$IHDIN<-as.factor(CVCOMP$IHDIN) 

 

 

CVCOMP%<>%mutate(ALPHABETABLOCK_1=case_when(ALPHABETABLOCK=="0"

~"N",ALPHABETABLOCK=="1"~"Y", 

                                         

ALPHABETABLOCK=="2"~"Y",ALPHABETABLOCK=="3"~"Y", 

                                         

ALPHABETABLOCK=="4"~"Y",ALPHABETABLOCK=="5"~"Y", 

                                         

ALPHABETABLOCK=="6"~"Y",ALPHABETABLOCK=="7"~"Y",TRUE~NA_character_

)) 

 

CVCOMP$ALPHABETABLOCK_1<-as.factor(CVCOMP$ALPHABETABLOCK_1) 

 

CVCOMP%<>%mutate(ACEI_1=case_when(ACEI=="0"~"N",ACEI=="1"~"Y", 

                               ACEI=="2"~"Y",ACEI=="3"~"Y", 

                               ACEI=="4"~"Y",ACEI=="5"~"Y", 

                               ACEI=="6"~"Y",ACEI=="7"~"Y", 

                               ACEI=="8"~"Y",ACEI=="9"~"Y", 

                               ACEI=="10"~"Y",ACEI=="11"~"Y", 

                               ACEI=="18"~"Y",ACEI=="19"~"Y", 

                               ACEI=="26"~"Y",TRUE~NA_character_)) 

 

CVCOMP$ACEI_1<-as.factor(CVCOMP$ACEI_1) 

 

CVCOMP%<>%mutate(ARB_1=case_when(ARB=="0"~"N",ARB=="1"~"Y", 

                              ARB=="2"~"Y",ARB=="3"~"Y", 
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                              ARB=="4"~"Y",ARB=="5"~"Y", 

                              ARB=="6"~"Y",ARB=="7"~"Y", 

                              ARB=="8"~"Y",ARB=="9"~"Y", 

                              ARB=="10"~"Y",ARB=="11"~"Y", 

                              ARB=="12"~"Y",TRUE~NA_character_)) 

 

CVCOMP$ARB_1<-as.factor(CVCOMP$ARB_1) 

 

CVCOMP%<>%mutate(ANTI_COAG_1=case_when(ANTI_COAG=="0"~"N",ANTI_COA

G=="1"~"Y", 

                                    ANTI_COAG=="2"~"Y",ANTI_COAG=="3"~"Y", 

                                    ANTI_COAG=="4"~"Y",ANTI_COAG=="5"~"Y", 

                                    ANTI_COAG=="6"~"Y",ANTI_COAG=="7"~"Y", 

                                    ANTI_COAG=="8"~"Y",ANTI_COAG=="9"~"Y", 

                                    ANTI_COAG=="10"~"Y",ANTI_COAG=="11"~"Y", 

                                    ANTI_COAG=="12"~"Y",ANTI_COAG=="13"~"Y", 

                                    

ANTI_COAG=="14"~"Y",ANTI_COAG=="19"~"Y",TRUE~NA_character_)) 

 

CVCOMP$ANTI_COAG_1<-as.factor(CVCOMP$ANTI_COAG_1) 

 

CVCOMP%<>%mutate(ANTI_PLATE_1=case_when(ANTI_PLATE=="0"~"N",ANTI_PL

ATE=="1"~"Y", 

                                     ANTI_PLATE=="2"~"Y",ANTI_PLATE=="3"~"Y", 

                                     ANTI_PLATE=="4"~"Y",ANTI_PLATE=="5"~"Y", 

                                     ANTI_PLATE=="6"~"Y",ANTI_PLATE=="7"~"Y", 

                                     ANTI_PLATE=="8"~"Y",ANTI_PLATE=="9"~"Y", 

                                     ANTI_PLATE=="10"~"Y",ANTI_PLATE=="11"~"Y", 

                                     

ANTI_PLATE=="12"~"Y",ANTI_PLATE=="13"~"Y",TRUE~NA_character_)) 

 

CVCOMP$ANTI_PLATE_1<-as.factor(CVCOMP$ANTI_PLATE_1) 
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CVCOMP%<>%mutate(CHOL_BILE_ABSORB_INHIB_1=case_when(CHOL_BILE_ABS

ORB_INHIB=="0"~"N",CHOL_BILE_ABSORB_INHIB=="1"~"Y", 

                                                 

CHOL_BILE_ABSORB_INHIB=="2"~"Y",CHOL_BILE_ABSORB_INHIB=="3"~"Y",TR

UE~NA_character_)) 

 

 

CVCOMP$CHOL_BILE_ABSORB_INHIB_1<-

as.factor(CVCOMP$CHOL_BILE_ABSORB_INHIB_1) 

 

CVCOMP%<>%mutate(CLASS3_1=case_when(CLASS3=="0"~"N",CLASS3=="1"~"Y", 

                                 CLASS3=="2"~"Y",CLASS3=="3"~"Y", 

                                 CLASS3=="4"~"Y",CLASS3=="5"~"Y", 

                                 CLASS3=="6"~"Y",CLASS3=="10"~"Y",TRUE~NA_character_)) 

 

CVCOMP$CLASS3_1<-as.factor(CVCOMP$CLASS3_1) 

 

CVCOMP%<>%mutate(DIHYDROPYRIDINE_1=case_when(DIHYDROPYRIDINE=="0"

~"N",DIHYDROPYRIDINE=="1"~"Y", 

                                          

DIHYDROPYRIDINE=="2"~"Y",DIHYDROPYRIDINE=="3"~"Y", 

                                          

DIHYDROPYRIDINE=="4"~"Y",DIHYDROPYRIDINE=="5"~"Y", 

                                          

DIHYDROPYRIDINE=="6"~"Y",DIHYDROPYRIDINE=="7"~"Y", 

                                          

DIHYDROPYRIDINE=="8"~"Y",DIHYDROPYRIDINE=="9"~"Y", 

                                          DIHYDROPYRIDINE=="11"~"Y",TRUE~NA_character_)) 

 

CVCOMP$DIHYDROPYRIDINE_1<-as.factor(CVCOMP$DIHYDROPYRIDINE_1) 

 

CVCOMP%<>%mutate(DIR_RENIN_INHIB_1=case_when(DIR_RENIN_INHIB=="0"~"N

",DIR_RENIN_INHIB=="1"~"Y", 

                                          DIR_RENIN_INHIB=="2"~"Y",TRUE~NA_character_)) 

 

CVCOMP$DIR_RENIN_INHIB_1<-as.factor(CVCOMP$DIR_RENIN_INHIB_1) 
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CVCOMP%<>%mutate(Fibrates_1=case_when(Fibrates=="0"~"N",Fibrates=="1"~"Y", 

                                   Fibrates=="2"~"Y",Fibrates=="3"~"Y", 

                                   Fibrates=="4"~"Y",Fibrates=="5"~"Y", 

                                   Fibrates=="6"~"Y",TRUE~NA_character_)) 

 

CVCOMP$Fibrates_1<-as.factor(CVCOMP$Fibrates_1) 

 

CVCOMP%<>%mutate(LONG_NITRATES_1=case_when(LONG_NITRATES=="0"~"N",

LONG_NITRATES=="1"~"Y", 

                                        LONG_NITRATES=="2"~"Y",LONG_NITRATES=="3"~"Y", 

                                        LONG_NITRATES=="4"~"Y",LONG_NITRATES=="5"~"Y", 

                                        LONG_NITRATES=="6"~"Y",TRUE~NA_character_)) 

 

CVCOMP$LONG_NITRATES_1<-as.factor(CVCOMP$LONG_NITRATES_1) 

 

CVCOMP%<>%mutate(Loop_1=case_when(Loop=="0"~"N",Loop=="1"~"Y", 

                               Loop=="2"~"Y",Loop=="3"~"Y", 

                               Loop=="4"~"Y",Loop=="5"~"Y", 

                               Loop=="6"~"Y",Loop=="7"~"Y", 

                               Loop=="8"~"Y",Loop=="10"~"Y", 

                               Loop=="11"~"Y",Loop=="12"~"Y", 

                               

Loop=="13"~"Y",Loop=="21"~"Y",Loop=="24"~"Y",TRUE~NA_character_)) 

 

CVCOMP$Loop_1<-as.factor(CVCOMP$Loop_1) 

 

CVCOMP%<>%mutate(MRA_1=case_when(MRA=="0"~"N",MRA=="1"~"Y", 

                              MRA=="2"~"Y",MRA=="3"~"Y", 

                              MRA=="4"~"Y",MRA=="5"~"Y", 

                              MRA=="6"~"Y",TRUE~NA_character_)) 

 

CVCOMP$MRA_1<-as.factor(CVCOMP$MRA_1) 
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CVCOMP%<>%mutate(NON_DIHYDROPYRIDINE_1=case_when(NON_DIHYDROPYR

IDINE=="0"~"N",NON_DIHYDROPYRIDINE=="1"~"Y", 

                                              

NON_DIHYDROPYRIDINE=="2"~"Y",NON_DIHYDROPYRIDINE=="3"~"Y", 

                                              

NON_DIHYDROPYRIDINE=="4"~"Y",NON_DIHYDROPYRIDINE=="5"~"Y", 

                                              

NON_DIHYDROPYRIDINE=="6"~"Y",NON_DIHYDROPYRIDINE=="10"~"Y", 

                                              

NON_DIHYDROPYRIDINE=="12"~"Y",TRUE~NA_character_)) 

 

CVCOMP$NON_DIHYDROPYRIDINE_1<-

as.factor(CVCOMP$NON_DIHYDROPYRIDINE_1) 

 

CVCOMP%<>%mutate(NON_SELEC_B_BLOCK_1=case_when(NON_SELEC_B_BLOC

K=="0"~"N",NON_SELEC_B_BLOCK=="1"~"Y", 

                                            

NON_SELEC_B_BLOCK=="2"~"Y",NON_SELEC_B_BLOCK=="3"~"Y", 

                                            

NON_SELEC_B_BLOCK=="4"~"Y",NON_SELEC_B_BLOCK=="7"~"Y",TRUE~NA_cha

racter_)) 

 

 

CVCOMP$NON_SELEC_B_BLOCK_1<-

as.factor(CVCOMP$NON_SELEC_B_BLOCK_1) 

 

CVCOMP%<>%mutate(SELEC_B_BLOCK_1=case_when(SELEC_B_BLOCK=="0"~"N",

SELEC_B_BLOCK=="1"~"Y", 

                                        SELEC_B_BLOCK=="2"~"Y",SELEC_B_BLOCK=="3"~"Y", 

                                        SELEC_B_BLOCK=="4"~"Y",SELEC_B_BLOCK=="5"~"Y", 

                                        SELEC_B_BLOCK=="6"~"Y",SELEC_B_BLOCK=="7"~"Y", 

                                        SELEC_B_BLOCK=="8"~"Y",SELEC_B_BLOCK=="9"~"Y", 

                                        SELEC_B_BLOCK=="10"~"Y",TRUE~NA_character_)) 

 

CVCOMP$SELEC_B_BLOCK_1<-as.factor(CVCOMP$SELEC_B_BLOCK_1) 
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CVCOMP%<>%mutate(SHORT_NITRATES_1=case_when(SHORT_NITRATES=="0"~"

N",SHORT_NITRATES=="1"~"Y", 

                                         SHORT_NITRATES=="2"~"Y",SHORT_NITRATES=="3"~"Y", 

                                         SHORT_NITRATES=="4"~"Y",SHORT_NITRATES=="5"~"Y", 

                                         SHORT_NITRATES=="6"~"Y",SHORT_NITRATES=="8"~"Y", 

                                         SHORT_NITRATES=="9"~"Y",TRUE~NA_character_)) 

 

CVCOMP$SHORT_NITRATES_1<-as.factor(CVCOMP$SHORT_NITRATES_1) 

 

CVCOMP%<>%mutate(STATINS_1=case_when(STATINS=="0"~"N",STATINS=="1"~"Y

", 

                                  STATINS=="2"~"Y",STATINS=="3"~"Y", 

                                  STATINS=="4"~"Y",STATINS=="5"~"Y", 

                                  STATINS=="6"~"Y",STATINS=="7"~"Y", 

                                  STATINS=="8"~"Y",STATINS=="9"~"Y", 

                                  STATINS=="10"~"Y",STATINS=="12"~"Y",TRUE~NA_character_)) 

 

CVCOMP$STATINS_1<-as.factor(CVCOMP$STATINS_1) 

 

CVCOMP%<>%mutate(THIAZIDES_DIUR_1=case_when(THIAZIDES_DIUR=="0"~"N",

THIAZIDES_DIUR=="1"~"Y", 

                                         THIAZIDES_DIUR=="2"~"Y",THIAZIDES_DIUR=="3"~"Y", 

                                         THIAZIDES_DIUR=="4"~"Y",THIAZIDES_DIUR=="5"~"Y", 

                                         THIAZIDES_DIUR=="6"~"Y",THIAZIDES_DIUR=="10"~"Y", 

                                         THIAZIDES_DIUR=="11"~"Y",TRUE~NA_character_)) 

 

CVCOMP$THIAZIDES_DIUR_1<-as.factor(CVCOMP$THIAZIDES_DIUR_1) 

 

CVCOMP%<>%mutate(BIGUANIDES_1=case_when(BIGUANIDES=="0"~"N",BIGUANI

DES=="1"~"Y",TRUE~NA_character_)) 

 

CVCOMP$BIGUANIDES_1<-as.factor(CVCOMP$BIGUANIDES_1) 
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CVCOMP%<>%mutate(DPP4_1=case_when(DPP4=="0"~"N",DPP4=="1"~"Y",DPP4=="2

"~"Y",DPP4=="3"~"Y",TRUE~NA_character_)) 

 

CVCOMP$DPP4_1<-as.factor(CVCOMP$DPP4_1) 

 

CVCOMP%<>%mutate(GLPR_AGONIST_1=case_when(GLPR_AGONIST=="0"~"N",GL

PR_AGONIST=="1"~"Y",GLPR_AGONIST=="2"~"Y",TRUE~NA_character_)) 

 

CVCOMP$GLPR_AGONIST_1<-as.factor(CVCOMP$GLPR_AGONIST_1) 

 

CVCOMP%<>%mutate(GLUCOSIDASE_INHIB_1=case_when(GLUCOSIDASE_INHIB=

="0"~"N",GLUCOSIDASE_INHIB=="1"~"Y",GLUCOSIDASE_INHIB=="2"~"Y",GLUC

OSIDASE_INHIB=="3"~"Y",TRUE~NA_character_)) 

 

CVCOMP$GLUCOSIDASE_INHIB_1<-as.factor(CVCOMP$GLUCOSIDASE_INHIB_1) 

 

CVCOMP%<>%mutate(INSULINS_1=case_when(INSULINS=="0"~"N",INSULINS=="1"

~"Y", 

                                   INSULINS=="2"~"Y",INSULINS=="3"~"Y", 

                                   INSULINS=="4"~"Y",INSULINS=="5"~"Y", 

                                   INSULINS=="6"~"Y",TRUE~NA_character_)) 

 

CVCOMP$INSULINS_1<-as.factor(CVCOMP$INSULINS_1) 

 

CVCOMP%<>%mutate(MEGLITINIDES_1=case_when(MEGLITINIDES=="0"~"N",MEG

LITINIDES=="1"~"Y",TRUE~NA_character_)) 

 

CVCOMP$MEGLITINIDES_1<-as.factor(CVCOMP$MEGLITINIDES_1) 

 

CVCOMP%<>%mutate(SULFONYLUREAS_1=case_when(SULFONYLUREAS=="0"~"N

",SULFONYLUREAS=="1"~"Y",SULFONYLUREAS=="2"~"Y",SULFONYLUREAS=="

3"~"Y",TRUE~NA_character_)) 

 

CVCOMP$SULFONYLUREAS_1<-as.factor(CVCOMP$SULFONYLUREAS_1) 
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CVCOMP%<>%mutate(THIAZOLIDINEDIONE_1=case_when(THIAZOLIDINEDIONE=

="0"~"N",THIAZOLIDINEDIONE=="1"~"Y",TRUE~NA_character_)) 

 

CVCOMP$THIAZOLIDINEDIONE_1<-as.factor(CVCOMP$THIAZOLIDINEDIONE_1) 

 

CVCOMP%<>%mutate(DPP4_BIGUANIDES_1=case_when(DPP4_BIGUANIDES=="0"~

"N",DPP4_BIGUANIDES=="1"~"Y",TRUE~NA_character_)) 

 

CVCOMP$DPP4_BIGUANIDES_1<-as.factor(CVCOMP$DPP4_BIGUANIDES_1) 

 

CVCOMP%<>%mutate(SODIUM_TRANSPORT_INHIB_1=case_when(SODIUM_TRAN

SPORT_INHIB=="0"~"N",SODIUM_TRANSPORT_INHIB=="1"~"Y",TRUE~NA_charact

er_)) 

 

CVCOMP$SODIUM_TRANSPORT_INHIB_1<-

as.factor(CVCOMP$SODIUM_TRANSPORT_INHIB_1) 

 

CVCOMP%<>%mutate(SULFONYLUREAS_BIGUANIDES_1=case_when(SULFONYLU

REAS_BIGUANIDES=="0"~"N",SULFONYLUREAS_BIGUANIDES=="1"~"Y",TRUE~

NA_character_)) 

 

CVCOMP$SULFONYLUREAS_BIGUANIDES_1<-

as.factor(CVCOMP$SULFONYLUREAS_BIGUANIDES_1) 

 

 

CVCOMP$DIABETES<-as.factor(CVCOMP$DIABETES) 

fct_explicit_na(CVCOMP$DIABETES,na_level="N") 

CVCOMP%<>%mutate(DIABETES=fct_explicit_na(DIABETES,na_level="N")) 

 

fct_explicit_na(CVCOMP$HYPERTENSION,na_level="N") 

CVCOMP%<>%mutate(HYPERTENSION=fct_explicit_na(HYPERTENSION,na_level="N

")) 

 

fct_explicit_na(CVCOMP$HYPERCHOLESTEROL,na_level="N") 
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CVCOMP%<>%mutate(HYPERCHOLESTEROL=fct_explicit_na(HYPERCHOLESTERO

L,na_level="N")) 

 

fct_explicit_na(CVCOMP$PAD,na_level="N") 

CVCOMP%<>%mutate(PAD=fct_explicit_na(PAD,na_level="N")) 

 

fct_explicit_na(CVCOMP$CAD,na_level="N") 

CVCOMP%<>%mutate(CAD=fct_explicit_na(CAD,na_level="N")) 

 

fct_explicit_na(CVCOMP$PREV_MI,na_level="N") 

CVCOMP%<>%mutate(PREV_MI=fct_explicit_na(PREV_MI,na_level="N")) 

 

fct_explicit_na(CVCOMP$PREV_STROKE,na_level="N") 

CVCOMP%<>%mutate(PREV_STROKE=fct_explicit_na(PREV_STROKE,na_level="N")) 

 

 

CVCOMP%<>%mutate(ATENOLOL_1=case_when(ATENOLOL=="1"~"Y",TRUE~NA_c

haracter_)) 

 

CVCOMP$ATENOLOL_1<-as.factor(CVCOMP$ATENOLOL_1) 

 

fct_explicit_na(CVCOMP$ATENOLOL_1,na_level="N") 

CVCOMP%<>%mutate(ATENOLOL_1=fct_explicit_na(ATENOLOL_1,na_level="N")) 

 

CVCOMP%<>%mutate(BISOPROLOL_1=case_when(BISOPROLOL=="1"~"Y",TRUE~N

A_character_)) 

 

CVCOMP$BISOPROLOL_1<-as.factor(CVCOMP$BISOPROLOL_1) 

 

fct_explicit_na(CVCOMP$BISOPROLOL_1,na_level="N") 

CVCOMP%<>%mutate(BISOPROLOL_1=fct_explicit_na(BISOPROLOL_1,na_level="N")) 
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CVCOMP%<>%mutate(CLOPIDOGREL_1=case_when(CLOPIDOGREL=="1"~"Y",TRU

E~NA_character_)) 

 

CVCOMP$CLOPIDOGREL_1<-as.factor(CVCOMP$CLOPIDOGREL_1) 

 

fct_explicit_na(CVCOMP$CLOPIDOGREL_1,na_level="N") 

CVCOMP%<>%mutate(CLOPIDOGREL_1=fct_explicit_na(CLOPIDOGREL_1,na_level="

N")) 

 

 

CVCOMP%<>%mutate(NEBIVOLOL_1=case_when(NEBIVOLOL=="1"~"Y",TRUE~NA

_character_)) 

 

CVCOMP$NEBIVOLOL_1<-as.factor(CVCOMP$NEBIVOLOL_1) 

 

fct_explicit_na(CVCOMP$NEBIVOLOL_1,na_level="N") 

CVCOMP%<>%mutate(NEBIVOLOL_1=fct_explicit_na(NEBIVOLOL_1,na_level="N")) 

 

 

 

CVCOMP%<>%mutate(ASP_CLOPIDOGREL_1=case_when(ASP_CLOPIDOGREL=="1"

~"Y",TRUE~NA_character_)) 

 

CVCOMP$ASP_CLOPIDOGREL_1<-as.factor(CVCOMP$ASP_CLOPIDOGREL_1) 

 

fct_explicit_na(CVCOMP$ASP_CLOPIDOGREL_1,na_level="N") 

CVCOMP%<>%mutate(ASP_CLOPIDOGREL_1=fct_explicit_na(ASP_CLOPIDOGREL_1

,na_level="N")) 

 

 

CVCOMP%<>%mutate(ASP_STAT_CLOPIDOGREL_1=case_when(ASP_STAT_CLOPID

OGREL=="1"~"Y",TRUE~NA_character_)) 
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CVCOMP$ASP_STAT_CLOPIDOGREL_1<-

as.factor(CVCOMP$ASP_STAT_CLOPIDOGREL_1) 

 

fct_explicit_na(CVCOMP$ASP_STAT_CLOPIDOGREL_1,na_level="N") 

CVCOMP%<>%mutate(ASP_STAT_CLOPIDOGREL_1=fct_explicit_na(ASP_STAT_CLO

PIDOGREL_1,na_level="N")) 

 

 

CVCOMP%<>%mutate(STAT_CLOPIDOGREL_1=case_when(STAT_CLOPIDOGREL==

"1"~"Y",TRUE~NA_character_)) 

 

CVCOMP$STAT_CLOPIDOGREL_1<-as.factor(CVCOMP$STAT_CLOPIDOGREL_1) 

 

fct_explicit_na(CVCOMP$STAT_CLOPIDOGREL_1,na_level="N") 

CVCOMP%<>%mutate(STAT_CLOPIDOGREL_1=fct_explicit_na(STAT_CLOPIDOGRE

L_1,na_level="N")) 

 

CVCOMP%<>%mutate(RACE_CODE=case_when(RACE=="AMERICAN INDIAN OR 

ALASKA NATIVE"~"OTHER", 

                                  RACE=="ASIAN"~"ASIAN", 

                                  RACE=="BLACK OR AFRICAN AMERICAN"~"OTHER", 

                                  RACE=="MULTIPLE"~"OTHER", 

                                  RACE=="NATIVE HAWAIIAN OR OTHER PACIFIC 

ISLANDER"~"OTHER", 

                                  RACE=="WHITE"~"WHITE",TRUE~NA_character_)) 

 

CVCOMP$ADT_CV<-as.Date(CVCOMP$ADT_CV) 

CVCOMP%<>%mutate(CVSTATUS=case_when(CVSTATUS==0~0,ADT_CV>COMMO

N_END_DATE~0,TRUE~1)) 

 

CVCOMP$RACE_CODE<-as.character(CVCOMP$RACE_CODE) 

 

CVCOMP$PREVEXCT<-as.factor(CVCOMP$PREVEXCT) 
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CVCOMP$SMKBLN<-as.factor(CVCOMP$SMKBLN) 

 

CVCOMP$PREVEXCT<-relevel(CVCOMP$PREVEXCT,ref="0") 

 

CVCOMP$SMKBLN<-relevel(CVCOMP$SMKBLN,ref="2") 

 

CVCOMP$HYPERTENSION<-relevel(CVCOMP$HYPERTENSION,ref="N") 

 

CVCOMP$HYPERCHOLESTEROL<-

relevel(CVCOMP$HYPERCHOLESTEROL,ref="N") 

 

CVCOMP$PAD<-relevel(CVCOMP$PAD,ref="N") 

 

CVCOMP$CAD<-relevel(CVCOMP$CAD,ref="N") 

 

CVCOMP$PREV_MI<-relevel(CVCOMP$PREV_MI,ref="N") 

 

CVCOMP$PREV_STROKE<-relevel(CVCOMP$PREV_STROKE,ref="N") 

 

CVCOMP$DIABETES<-relevel(CVCOMP$DIABETES,ref="N") 

 

CVCOMP$ATENOLOL_1<-relevel(CVCOMP$ATENOLOL_1,ref="N") 

 

CVCOMP$BISOPROLOL_1<-relevel(CVCOMP$BISOPROLOL_1,ref="N") 

 

CVCOMP$NEBIVOLOL_1<-relevel(CVCOMP$NEBIVOLOL_1,ref="N") 

 

CVCOMP$CLOPIDOGREL_1<-relevel(CVCOMP$CLOPIDOGREL_1,ref="N") 

 

CVCOMP$ASPIRIN[is.na(CVCOMP$ASPIRIN)]<-0 

CVCOMP$ABCIXIMAB[is.na(CVCOMP$ABCIXIMAB)]<-0 

CVCOMP$ASPDIP[is.na(CVCOMP$ASPDIP)]<-0 
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CVCOMP$CARB[is.na(CVCOMP$CARB)]<-0 

CVCOMP$DIP[is.na(CVCOMP$DIP)]<-0 

CVCOMP$ETHICO[is.na(CVCOMP$ETHICO)]<-0 

CVCOMP$ILO[is.na(CVCOMP$ILO)]<-0 

CVCOMP$ICO[is.na(CVCOMP$ICO)]<-0 

CVCOMP$MESOGLYCAN[is.na(CVCOMP$MESOGLYCAN)]<-0 

CVCOMP$OZAGREL[is.na(CVCOMP$OZAGREL)]<-0 

CVCOMP$SARPO[is.na(CVCOMP$SARPO)]<-0 

CVCOMP$PRAS[is.na(CVCOMP$PRAS)]<-0 

CVCOMP$PAI[is.na(CVCOMP$PAI)]<-0 

CVCOMP$TICA[is.na(CVCOMP$TICA)]<-0 

CVCOMP$TICLO[is.na(CVCOMP$TICLO)]<-0 

CVCOMP$TRIF[is.na(CVCOMP$TRIF)]<-0 

CVCOMP$TIRO[is.na(CVCOMP$TIRO)]<-0 

CVCOMP$TREPR[is.na(CVCOMP$TREPR)]<-0 

 

CVCOMP$ASPIRIN<-as.factor(CVCOMP$ASPIRIN) 

CVCOMP$ASPIRIN<-relevel(CVCOMP$ASPIRIN,ref="0") 

 

CVCOMP%<>%mutate(os.days=CVCOMP$os_yrs*365.25) 

CVCOMP$os.days<-as.integer(CVCOMP$os.days) 

CVCOMP%<>%mutate(ADY_CV_FULL=case_when(os.days>ADY_CV~ADY_CV,TRUE

~os.days)) 

 

CVCOMP$BB_1<-

paste(CVCOMP$SELEC_B_BLOCK_1,CVCOMP$NON_SELEC_B_BLOCK_1) 

 

CVCOMP%<>%mutate(BB_2=case_when(BB_1=="N N"~"N",BB_1=="N Y"~"Y", 

                             BB_1=="Y N"~"Y",BB_1=="Y Y"~"Y",TRUE~NA_character_)) 

 

CVCOMP$BB_2<-as.factor(CVCOMP$BB_2) 
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CVCOMP$ACEIARB_1<-paste(CVCOMP$ACEI_1,CVCOMP$ARB_1) 

 

CVCOMP%<>%mutate(ACEIARB_2=case_when(ACEIARB_1=="N 

N"~"N",ACEIARB_1=="N Y"~"Y", 

                                  ACEIARB_1=="Y N"~"Y",ACEIARB_1=="Y 

Y"~"Y",TRUE~NA_character_)) 

 

CVCOMP$ACEIARB_2<-as.factor(CVCOMP$ACEIARB_2) 

 

 

CVCOMP$IHD_CAD<-paste(CVCOMP$IHDIN,CVCOMP$CAD) 

 

CVCOMP%<>%mutate(IHD_CAD_1=case_when(IHD_CAD=="0 N"~"N",IHD_CAD=="0 

Y"~"Y", 

                                  IHD_CAD=="1 N"~"Y",IHD_CAD=="1 

Y"~"Y",TRUE~NA_character_)) 

 

CVCOMP$IHD_CAD_1<-as.factor(CVCOMP$IHD_CAD_1) 

 

 

 

fct_explicit_na(CVCOMP$ACEIARB_2,na_level="N") 

CVCOMP%<>%mutate(ACEIARB_2=fct_explicit_na(ACEIARB_2,na_level="N")) 

 

fct_explicit_na(CVCOMP$BB_2,na_level="N") 

CVCOMP%<>%mutate(BB_2=fct_explicit_na(BB_2,na_level="N")) 

 

fct_explicit_na(CVCOMP$ANTI_COAG_1,na_level="N") 

CVCOMP%<>%mutate(ANTI_COAG_1=fct_explicit_na(ANTI_COAG_1,na_level="N")) 

 

fct_explicit_na(CVCOMP$ANTI_PLATE_1,na_level="N") 

CVCOMP%<>%mutate(ANTI_PLATE_1=fct_explicit_na(ANTI_PLATE_1,na_level="N")) 
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fct_explicit_na(CVCOMP$DIHYDROPYRIDINE_1,na_level="N") 

CVCOMP%<>%mutate(DIHYDROPYRIDINE_1=fct_explicit_na(DIHYDROPYRIDINE_1

,na_level="N")) 

 

fct_explicit_na(ACM$LONG_NITRATES_1,na_level="N") 

ACM%<>%mutate(LONG_NITRATES_1=fct_explicit_na(LONG_NITRATES_1,na_level=

"N")) 

 

fct_explicit_na(CVCOMP$Loop_1,na_level="N") 

CVCOMP%<>%mutate(Loop_1=fct_explicit_na(Loop_1,na_level="N")) 

 

fct_explicit_na(CVCOMP$NON_DIHYDROPYRIDINE_1,na_level="N") 

CVCOMP%<>%mutate(NON_DIHYDROPYRIDINE_1=fct_explicit_na(NON_DIHYDRO

PYRIDINE_1,na_level="N")) 

 

fct_explicit_na(CVCOMP$STATINS_1,na_level="N") 

CVCOMP%<>%mutate(STATINS_1=fct_explicit_na(STATINS_1,na_level="N")) 

 

fct_explicit_na(CVCOMP$THIAZIDES_DIUR_1,na_level="N") 

CVCOMP%<>%mutate(THIAZIDES_DIUR_1=fct_explicit_na(THIAZIDES_DIUR_1,na_l

evel="N")) 

 

fct_explicit_na(CVCOMP$BIGUANIDES_1,na_level="N") 

CVCOMP%<>%mutate(BIGUANIDES_1=fct_explicit_na(BIGUANIDES_1,na_level="N")) 

 

fct_explicit_na(CVCOMP$INSULINS_1,na_level="N") 

CVCOMP%<>%mutate(INSULINS_1=fct_explicit_na(INSULINS_1,na_level="N")) 

 

 

fct_explicit_na(CVCOMP$SULFONYLUREAS_1,na_level="N") 

CVCOMP%<>%mutate(SULFONYLUREAS_1=fct_explicit_na(SULFONYLUREAS_1,na

_level="N")) 
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CVCOMP$ASPCLOP<-paste(CVCOMP$ASPIRIN_1,CVCOMP$CLOPIDOGREL_1) 

 

CVCOMP%<>%mutate(ASPCLOPCOMBO=case_when(ASPCLOP=="N 

N"~"N",ASPCLOP=="N Y"~"N", 

                                     ASPCLOP=="Y N"~"N",ASPCLOP=="Y 

Y"~"Y",TRUE~NA_character_)) 

 

CVCOMP$ASPCLOPCOMBO<-as.factor(CVCOMP$ASPCLOPCOMBO) 

 

#Had -1 value 

CVCOMP$CVSTATUS[CVCOMP$USUBJID=="9466"]<-NA 

CVCOMP$ADY_CV[CVCOMP$USUBJID=="9466"]<-NA 

CVCOMP$ADY_CV_FULL[CVCOMP$USUBJID=="9466"]<-NA 

 

CVCOMP%<>%distinct(USUBJID,AGE,.keep_all=TRUE) 

 

 

CVCOMP$CV_CRITERIA<-CVCOMP$RACE<-CVCOMP$SITEID<-

CVCOMP$LSTCT<-CVCOMP$TREATMENT_YEARS<-CVCOMP$os_yrs<-

CVCOMP$ALPHABETABLOCK<-NULL 

CVCOMP$ACEI<-CVCOMP$CVCOMP<-CVCOMP$ANTI_COAG<-

CVCOMP$ANTI_PLATE<-CVCOMP$CHOL_BILE_ABSORB_INHIB<-

CVCOMP$CLASS3<-NULL 

CVCOMP$DIHYDROPYRIDINE<-CVCOMP$DIR_RENIN_INHIB<-

CVCOMP$Fibrates<-CVCOMP$LONG_NITRATES<-CVCOMP$Loop<-

CVCOMP$MRA<-NULL 

CVCOMP$Niacin<-CVCOMP$NON_DIHYDROPYRIDINE<-

CVCOMP$NON_SELEC_B_BLOCK<-CVCOMP$Other<-CVCOMP$SUPPLEMENTS<-

CVCOMP$SELEC_B_BLOCK<-NULL 

CVCOMP$SHORT_NITRATES<-CVCOMP$STATINS<-

CVCOMP$THIAZIDES_DIUR<-CVCOMP$NA.x<-CVCOMP$BIGUANIDES<-

CVCOMP$DPP4<-CVCOMP$DPP4_BIGUANIDES<-NULL 

CVCOMP$GLPR_AGONIST<-CVCOMP$GLUCOSIDASE_INHIB<-

CVCOMP$INSULINS<-CVCOMP$MEGLITINIDES<-CVCOMP$OTHER<-

CVCOMP$SODIUM_TRANSPORT_INHIB<-NULL 
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CVCOMP$SULFONYLUREAS<-CVCOMP$SULFONYLUREAS_BIGUANIDES<-

CVCOMP$THIAZOLIDINEDIONE<-CVCOMP$NA.y<-

CVCOMP$TREATED_FOR_PAD<-NULL 

CVCOMP$`CV risk criteria at study entry`<-CVCOMP$DIABETES_ORGAN_DISEASE<-

CVCOMP$DIABETES_EYES<-CVCOMP$DIABETES_KIDNEYS<-NULL 

CVCOMP$DIABETES_LIMBS<-CVCOMP$`History of CV disease at study entry`<-

CVCOMP$`Met protocol CV entry criteria`<-NULL 

CVCOMP$GLUC_CAT<-CVCOMP$BB_1<-CVCOMP$ACEIARB_1<-NULL 

CVCOMP$ATENOLOL<-CVCOMP$BISOPROLOL<-CVCOMP$CLOPIDOGREL<-

CVCOMP$NEBIVOLOL<-NULL 

CVCOMP$ASP_BISOPROLOL<-CVCOMP$ASP_CLOPIDOGREL<-

CVCOMP$ASP_STAT_CLOPIDOGREL<-CVCOMP$STAT_CLOPIDOGREL<-NULL 

CVCOMP$ASPCLOP<-CVCOMP$IHD_CAD<-NULL 

 

 

 

CVCOMP$CVSTATUS<-as.factor(CVCOMP$CVSTATUS) 

 

CVCOMP_TABLE<-

tableby(~AGE+SEX+TRTPN+BMI+SMKBLN+PACK_YRS+RACE_CODE+DIABETES+ 

                        

HYPERCHOLESTEROL+PAD+CAD+HYPERTENSION+PREV_MI+PREV_STROKE+ 

                        

ALPHABETABLOCK_1+ACEI_1+ARB_1+ANTI_PLATE_1+ANTI_COAG_1+ 

                        

CHOL_BILE_ABSORB_INHIB_1+CLASS3_1+DIHYDROPYRIDINE_1+DIR_RENIN_I

NHIB_1+ 

                        

Fibrates_1+LONG_NITRATES_1+Loop_1+MRA_1+ACEIARB_2+BB_2+NON_DIHYDR

OPYRIDINE_1+ 

                        

NON_SELEC_B_BLOCK_1+SELEC_B_BLOCK_1+SHORT_NITRATES_1+ 

                        

STATINS_1+THIAZIDES_DIUR_1+BIGUANIDES_1+DPP4_1+GLPR_AGONIST_1+ 

                        

GLUCOSIDASE_INHIB_1+INSULINS_1+MEGLITINIDES_1+SULFONYLUREAS_1+ 

                        

THIAZOLIDINEDIONE_1+DPP4_BIGUANIDES_1+SODIUM_TRANSPORT_INHIB_1+ 
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                        SULFONYLUREAS_BIGUANIDES_1+CVSTATUS+ADY_CV+FEV1+ 

                        

CV_RISK_CRIT_ONLY+IHDIN+HF+IHD_CAD_1+ATENOLOL_1+BISOPROLOL_1+ 

                        

NEBIVOLOL_1+CLOPIDOGREL_1+ASPIRIN+ASP_STAT_CLOPIDOGREL_1+ 

                        

ASP_CLOPIDOGREL_1+STAT_CLOPIDOGREL_1,data=subset(CVCOMP,INTENTION_

TO_TREAT=="Y"&ASP_STAT_CLOPIDOGREL_1=="N"& 

                                                                           

ASP_CLOPIDOGREL_1=="N"&STAT_CLOPIDOGREL_1=="N"&CLOPIDOGREL_1=="

N"& 

                                                                           

ABCIXIMAB=="0"&ASPDIP=="0"&CARB=="0"&DIP=="0"&ETHICO=="0"& 

                                                                           

ILO=="0"&ICO=="0"&MESOGLYCAN=="0"&OZAGREL=="0"& 

                                                                           

SARPO=="0"&PRAS=="0"&PAI=="0"&TICA=="0"&TICLO=="0"& 

                                                                           TRIF=="0"&TIRO=="0"&TREPR=="0"))  

 

summary(CVCOMP_TABLE,title="CVCOMP_TABLE") 

 

CVCOMP$CVSTATUS<-as.numeric(CVCOMP$CVSTATUS) 

CVCOMP%<>%mutate(CVSTATUS=case_when(CVSTATUS=="1"~0,CVSTATUS=="2"~

1,TRUE~NA_real_)) 

 

coxph(Surv(ADY_CV_FULL,CVSTATUS)~AGE+SEX+BMI+SMKBLN+PACK_YRS+PA

D+PREV_STROKE+IHD_CAD_1+HF+ 

        HYPERTENSION+HYPERCHOLESTEROL+DIABETES+ASPIRIN, 

      

data=subset(CVCOMP,INTENTION_TO_TREAT=="Y"&ASP_STAT_CLOPIDOGREL_1

=="N"& 

                    

ASP_CLOPIDOGREL_1=="N"&STAT_CLOPIDOGREL_1=="N"&CLOPIDOGREL_1=="

N"& 

                    

ABCIXIMAB=="0"&ASPDIP=="0"&CARB=="0"&DIP=="0"&ETHICO=="0"& 

                    ILO=="0"&ICO=="0"&MESOGLYCAN=="0"&OZAGREL=="0"& 

                    SARPO=="0"&PRAS=="0"&PAI=="0"&TICA=="0"&TICLO=="0"& 
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TRIF=="0"&TIRO=="0"&TREPR=="0"))%>%gtsummary::tbl_regression(exp=TRUE) 

#Exacerbation Rate 

 

v<-merge(exac,sla,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

w<-merge(v,medstable,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

y<-merge(w,cvcrit,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

z<-merge(y,glucose,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

z1<-merge(z,fev,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

z2<-merge(z1,cvhist,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

z3<-merge(z2,t2e,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

z4<-merge(z3,t2em,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

z5<-merge(z4,t2es,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

z6<-merge(z5,smoking,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

z7<-merge(z6,test,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

EXAC<-z7 

 

 

colnames(EXAC)[colnames(EXAC)=="Alpha and beta blocking"]<-"ALPHABETABLOCK" 

colnames(EXAC)[colnames(EXAC)=="Angiotensin-converting Enzyme Inhibitors"]<-

"ACEI" 

colnames(EXAC)[colnames(EXAC)=="Angiotensin receptor blockers"]<-"ARB" 
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colnames(EXAC)[colnames(EXAC)=="Anti-coagulant therapy"]<-"ANTI_COAG" 

colnames(EXAC)[colnames(EXAC)=="Anti-platelet therapy"]<-"ANTI_PLATE" 

colnames(EXAC)[colnames(EXAC)=="Cholesterol and bile acid absorption inhibitors"]<-

"CHOL_BILE_ABSORB_INHIB" 

colnames(EXAC)[colnames(EXAC)=="Class III"]<-"CLASS3" 

colnames(EXAC)[colnames(EXAC)=="Dihydropyridine"]<-"DIHYDROPYRIDINE" 

colnames(EXAC)[colnames(EXAC)=="Direct Renin Inhibitors"]<-"DIR_RENIN_INHIB" 

colnames(EXAC)[colnames(EXAC)=="Long-acting"]<-"LONG_NITRATES" 

colnames(EXAC)[colnames(EXAC)=="Short-acting"]<-"SHORT_NITRATES" 

colnames(EXAC)[colnames(EXAC)=="Mineralocorticoid Receptor Antagonists"]<-"MRA" 

colnames(EXAC)[colnames(EXAC)=="Non-dihydropyridine"]<-

"NON_DIHYDROPYRIDINE" 

colnames(EXAC)[colnames(EXAC)=="Non-selective beta-adrenergic receptor blocker"]<-

"NON_SELEC_B_BLOCK" 

colnames(EXAC)[colnames(EXAC)=="Other lipid modifying"]<-"SUPPLEMENTS" 

colnames(EXAC)[colnames(EXAC)=="Selective beta1-adrenergic receptor blocker"]<-

"SELEC_B_BLOCK" 

colnames(EXAC)[colnames(EXAC)=="Statins"]<-"STATINS" 

colnames(EXAC)[colnames(EXAC)=="Thiazides and Thiazide like Diuretics"]<-

"THIAZIDES_DIUR" 

colnames(EXAC)[colnames(EXAC)=="Being treated for diabetes mellitus"]<-"DIABETES" 

colnames(EXAC)[colnames(EXAC)=="Being treated for hypercholesterolemia"]<-

"HYPERCHOLESTEROL" 

colnames(EXAC)[colnames(EXAC)=="Being treated for hypertension"]<-

"HYPERTENSION" 

colnames(EXAC)[colnames(EXAC)=="Diabetes mellitus with target organ disease"]<-

"DIABETES_ORGAN_DISEASE" 

colnames(EXAC)[colnames(EXAC)=="Diabetes mellitus with target organ disease: eyes"]<-

"DIABETES_EYES" 

colnames(EXAC)[colnames(EXAC)=="Being treated for peripheral arterial disease"]<-

"TREATED_FOR_PAD" 

colnames(EXAC)[colnames(EXAC)=="Diabetes mellitus with target organ disease: 

limbs/extremities"]<-"DIABETES_LIMBS" 

colnames(EXAC)[colnames(EXAC)=="Diabetes mellitus with target organ disease: 

kidneys"]<-"DIABETES_KIDNEYS" 

colnames(EXAC)[colnames(EXAC)=="Established coronary artery disease (CAD)"]<-

"CAD" 
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colnames(EXAC)[colnames(EXAC)=="Established peripheral arterial disease (PAD)"]<-

"PAD" 

colnames(EXAC)[colnames(EXAC)=="Previous MI"]<-"PREV_MI" 

colnames(EXAC)[colnames(EXAC)=="Previous stroke"]<-"PREV_STROKE" 

 

 

EXAC$TRTPN<-as.factor(EXAC$TRTPN) 

EXAC$PREV_MI<-as.factor(EXAC$PREV_MI) 

EXAC$PREV_STROKE<-as.factor(EXAC$PREV_STROKE) 

EXAC$CAD<-as.factor(EXAC$CAD) 

EXAC$PAD<-as.factor(EXAC$PAD) 

EXAC$HYPERTENSION<-as.factor(EXAC$HYPERTENSION) 

EXAC$HYPERCHOLESTEROL<-as.factor(EXAC$HYPERCHOLESTEROL) 

EXAC$TREATED_FOR_PAD<-as.factor(EXAC$TREATED_FOR_PAD) 

EXAC$DIABETES_ORGAN_DISEASE<-

as.factor(EXAC$DIABETES_ORGAN_DISEASE) 

EXAC$DIABETES_EYES<-as.factor(EXAC$DIABETES_EYES) 

EXAC$DIABETES_KIDNEYS<-as.factor(EXAC$DIABETES_KIDNEYS) 

EXAC$DIABETES_LIMBS<-as.factor(EXAC$DIABETES_LIMBS) 

EXAC$'Met protocol CV entry criteria'<-as.factor(EXAC$'Met protocol CV entry criteria') 

EXAC$'History of CV disease at study entry'<-as.factor(EXAC$'History of CV disease at 

study entry') 

EXAC$DIABETES<-as.factor(EXAC$DIABETES) 

EXAC$PREVEXCT<-as.factor(EXAC$PREVEXCT) 

 

EXAC%<>%mutate(ALPHABETABLOCK_1=case_when(ALPHABETABLOCK=="0"~"

N",ALPHABETABLOCK=="1"~"Y", 

                                         

ALPHABETABLOCK=="2"~"Y",ALPHABETABLOCK=="3"~"Y", 

                                         

ALPHABETABLOCK=="4"~"Y",ALPHABETABLOCK=="5"~"Y", 

                                         

ALPHABETABLOCK=="6"~"Y",ALPHABETABLOCK=="7"~"Y",TRUE~NA_character_

)) 

 



175 

 

EXAC$ALPHABETABLOCK_1<-as.factor(EXAC$ALPHABETABLOCK_1) 

 

EXAC%<>%mutate(ACEI_1=case_when(ACEI=="0"~"N",ACEI=="1"~"Y", 

                               ACEI=="2"~"Y",ACEI=="3"~"Y", 

                               ACEI=="4"~"Y",ACEI=="5"~"Y", 

                               ACEI=="6"~"Y",ACEI=="7"~"Y", 

                               ACEI=="8"~"Y",ACEI=="9"~"Y", 

                               ACEI=="10"~"Y",ACEI=="11"~"Y", 

                               ACEI=="18"~"Y",ACEI=="19"~"Y", 

                               ACEI=="26"~"Y",TRUE~NA_character_)) 

 

EXAC$ACEI_1<-as.factor(EXAC$ACEI_1) 

 

EXAC%<>%mutate(ARB_1=case_when(ARB=="0"~"N",ARB=="1"~"Y", 

                              ARB=="2"~"Y",ARB=="3"~"Y", 

                              ARB=="4"~"Y",ARB=="5"~"Y", 

                              ARB=="6"~"Y",ARB=="7"~"Y", 

                              ARB=="8"~"Y",ARB=="9"~"Y", 

                              ARB=="10"~"Y",ARB=="11"~"Y", 

                              ARB=="12"~"Y",TRUE~NA_character_)) 

 

EXAC$ARB_1<-as.factor(EXAC$ARB_1) 

 

EXAC%<>%mutate(ANTI_COAG_1=case_when(ANTI_COAG=="0"~"N",ANTI_COAG=

="1"~"Y", 

                                    ANTI_COAG=="2"~"Y",ANTI_COAG=="3"~"Y", 

                                    ANTI_COAG=="4"~"Y",ANTI_COAG=="5"~"Y", 

                                    ANTI_COAG=="6"~"Y",ANTI_COAG=="7"~"Y", 

                                    ANTI_COAG=="8"~"Y",ANTI_COAG=="9"~"Y", 

                                    ANTI_COAG=="10"~"Y",ANTI_COAG=="11"~"Y", 

                                    ANTI_COAG=="12"~"Y",ANTI_COAG=="13"~"Y", 

                                    

ANTI_COAG=="14"~"Y",ANTI_COAG=="19"~"Y",TRUE~NA_character_)) 
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EXAC$ANTI_COAG_1<-as.factor(EXAC$ANTI_COAG_1) 

 

EXAC%<>%mutate(ANTI_PLATE_1=case_when(ANTI_PLATE=="0"~"N",ANTI_PLAT

E=="1"~"Y", 

                                     ANTI_PLATE=="2"~"Y",ANTI_PLATE=="3"~"Y", 

                                     ANTI_PLATE=="4"~"Y",ANTI_PLATE=="5"~"Y", 

                                     ANTI_PLATE=="6"~"Y",ANTI_PLATE=="7"~"Y", 

                                     ANTI_PLATE=="8"~"Y",ANTI_PLATE=="9"~"Y", 

                                     ANTI_PLATE=="10"~"Y",ANTI_PLATE=="11"~"Y", 

                                     

ANTI_PLATE=="12"~"Y",ANTI_PLATE=="13"~"Y",TRUE~NA_character_)) 

 

EXAC$ANTI_PLATE_1<-as.factor(EXAC$ANTI_PLATE_1) 

 

EXAC%<>%mutate(CHOL_BILE_ABSORB_INHIB_1=case_when(CHOL_BILE_ABSOR

B_INHIB=="0"~"N",CHOL_BILE_ABSORB_INHIB=="1"~"Y", 

                                                 

CHOL_BILE_ABSORB_INHIB=="2"~"Y",CHOL_BILE_ABSORB_INHIB=="3"~"Y",TR

UE~NA_character_)) 

 

 

EXAC$CHOL_BILE_ABSORB_INHIB_1<-

as.factor(EXAC$CHOL_BILE_ABSORB_INHIB_1) 

 

EXAC%<>%mutate(CLASS3_1=case_when(CLASS3=="0"~"N",CLASS3=="1"~"Y", 

                                 CLASS3=="2"~"Y",CLASS3=="3"~"Y", 

                                 CLASS3=="4"~"Y",CLASS3=="5"~"Y", 

                                 CLASS3=="6"~"Y",CLASS3=="10"~"Y",TRUE~NA_character_)) 

 

EXAC$CLASS3_1<-as.factor(EXAC$CLASS3_1) 

 

EXAC%<>%mutate(DIHYDROPYRIDINE_1=case_when(DIHYDROPYRIDINE=="0"~"N

",DIHYDROPYRIDINE=="1"~"Y", 
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DIHYDROPYRIDINE=="2"~"Y",DIHYDROPYRIDINE=="3"~"Y", 

                                          

DIHYDROPYRIDINE=="4"~"Y",DIHYDROPYRIDINE=="5"~"Y", 

                                          

DIHYDROPYRIDINE=="6"~"Y",DIHYDROPYRIDINE=="7"~"Y", 

                                          

DIHYDROPYRIDINE=="8"~"Y",DIHYDROPYRIDINE=="9"~"Y", 

                                          DIHYDROPYRIDINE=="11"~"Y",TRUE~NA_character_)) 

 

EXAC$DIHYDROPYRIDINE_1<-as.factor(EXAC$DIHYDROPYRIDINE_1) 

 

EXAC%<>%mutate(DIR_RENIN_INHIB_1=case_when(DIR_RENIN_INHIB=="0"~"N",D

IR_RENIN_INHIB=="1"~"Y", 

                                          DIR_RENIN_INHIB=="2"~"Y",TRUE~NA_character_)) 

 

EXAC$DIR_RENIN_INHIB_1<-as.factor(EXAC$DIR_RENIN_INHIB_1) 

 

EXAC%<>%mutate(Fibrates_1=case_when(Fibrates=="0"~"N",Fibrates=="1"~"Y", 

                                   Fibrates=="2"~"Y",Fibrates=="3"~"Y", 

                                   Fibrates=="4"~"Y",Fibrates=="5"~"Y", 

                                   Fibrates=="6"~"Y",TRUE~NA_character_)) 

 

EXAC$Fibrates_1<-as.factor(EXAC$Fibrates_1) 

 

EXAC%<>%mutate(LONG_NITRATES_1=case_when(LONG_NITRATES=="0"~"N",LO

NG_NITRATES=="1"~"Y", 

                                        LONG_NITRATES=="2"~"Y",LONG_NITRATES=="3"~"Y", 

                                        LONG_NITRATES=="4"~"Y",LONG_NITRATES=="5"~"Y", 

                                        LONG_NITRATES=="6"~"Y",TRUE~NA_character_)) 

 

EXAC$LONG_NITRATES_1<-as.factor(EXAC$LONG_NITRATES_1) 

 

EXAC%<>%mutate(Loop_1=case_when(Loop=="0"~"N",Loop=="1"~"Y", 
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                               Loop=="2"~"Y",Loop=="3"~"Y", 

                               Loop=="4"~"Y",Loop=="5"~"Y", 

                               Loop=="6"~"Y",Loop=="7"~"Y", 

                               Loop=="8"~"Y",Loop=="10"~"Y", 

                               Loop=="11"~"Y",Loop=="12"~"Y", 

                               

Loop=="13"~"Y",Loop=="21"~"Y",Loop=="24"~"Y",TRUE~NA_character_)) 

 

EXAC$Loop_1<-as.factor(EXAC$Loop_1) 

 

EXAC%<>%mutate(MRA_1=case_when(MRA=="0"~"N",MRA=="1"~"Y", 

                              MRA=="2"~"Y",MRA=="3"~"Y", 

                              MRA=="4"~"Y",MRA=="5"~"Y", 

                              MRA=="6"~"Y",TRUE~NA_character_)) 

 

EXAC$MRA_1<-as.factor(EXAC$MRA_1) 

 

EXAC%<>%mutate(NON_DIHYDROPYRIDINE_1=case_when(NON_DIHYDROPYRIDI

NE=="0"~"N",NON_DIHYDROPYRIDINE=="1"~"Y", 

                                              

NON_DIHYDROPYRIDINE=="2"~"Y",NON_DIHYDROPYRIDINE=="3"~"Y", 

                                              

NON_DIHYDROPYRIDINE=="4"~"Y",NON_DIHYDROPYRIDINE=="5"~"Y", 

                                              

NON_DIHYDROPYRIDINE=="6"~"Y",NON_DIHYDROPYRIDINE=="10"~"Y", 

                                              

NON_DIHYDROPYRIDINE=="12"~"Y",TRUE~NA_character_)) 

 

EXAC$NON_DIHYDROPYRIDINE_1<-as.factor(EXAC$NON_DIHYDROPYRIDINE_1) 

 

EXAC%<>%mutate(NON_SELEC_B_BLOCK_1=case_when(NON_SELEC_B_BLOCK==

"0"~"N",NON_SELEC_B_BLOCK=="1"~"Y", 

                                            

NON_SELEC_B_BLOCK=="2"~"Y",NON_SELEC_B_BLOCK=="3"~"Y", 
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NON_SELEC_B_BLOCK=="4"~"Y",NON_SELEC_B_BLOCK=="7"~"Y",TRUE~NA_cha

racter_)) 

 

 

EXAC$NON_SELEC_B_BLOCK_1<-as.factor(EXAC$NON_SELEC_B_BLOCK_1) 

 

EXAC%<>%mutate(SELEC_B_BLOCK_1=case_when(SELEC_B_BLOCK=="0"~"N",SE

LEC_B_BLOCK=="1"~"Y", 

                                        SELEC_B_BLOCK=="2"~"Y",SELEC_B_BLOCK=="3"~"Y", 

                                        SELEC_B_BLOCK=="4"~"Y",SELEC_B_BLOCK=="5"~"Y", 

                                        SELEC_B_BLOCK=="6"~"Y",SELEC_B_BLOCK=="7"~"Y", 

                                        SELEC_B_BLOCK=="8"~"Y",SELEC_B_BLOCK=="9"~"Y", 

                                        SELEC_B_BLOCK=="10"~"Y",TRUE~NA_character_)) 

 

EXAC$SELEC_B_BLOCK_1<-as.factor(EXAC$SELEC_B_BLOCK_1) 

 

EXAC%<>%mutate(SHORT_NITRATES_1=case_when(SHORT_NITRATES=="0"~"N",S

HORT_NITRATES=="1"~"Y", 

                                         SHORT_NITRATES=="2"~"Y",SHORT_NITRATES=="3"~"Y", 

                                         SHORT_NITRATES=="4"~"Y",SHORT_NITRATES=="5"~"Y", 

                                         SHORT_NITRATES=="6"~"Y",SHORT_NITRATES=="8"~"Y", 

                                         SHORT_NITRATES=="9"~"Y",TRUE~NA_character_)) 

 

EXAC$SHORT_NITRATES_1<-as.factor(EXAC$SHORT_NITRATES_1) 

 

EXAC%<>%mutate(STATINS_1=case_when(STATINS=="0"~"N",STATINS=="1"~"Y", 

                                  STATINS=="2"~"Y",STATINS=="3"~"Y", 

                                  STATINS=="4"~"Y",STATINS=="5"~"Y", 

                                  STATINS=="6"~"Y",STATINS=="7"~"Y", 

                                  STATINS=="8"~"Y",STATINS=="9"~"Y", 

                                  STATINS=="10"~"Y",STATINS=="12"~"Y",TRUE~NA_character_)) 
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EXAC$STATINS_1<-as.factor(EXAC$STATINS_1) 

 

EXAC%<>%mutate(THIAZIDES_DIUR_1=case_when(THIAZIDES_DIUR=="0"~"N",TH

IAZIDES_DIUR=="1"~"Y", 

                                         THIAZIDES_DIUR=="2"~"Y",THIAZIDES_DIUR=="3"~"Y", 

                                         THIAZIDES_DIUR=="4"~"Y",THIAZIDES_DIUR=="5"~"Y", 

                                         THIAZIDES_DIUR=="6"~"Y",THIAZIDES_DIUR=="10"~"Y", 

                                         THIAZIDES_DIUR=="11"~"Y",TRUE~NA_character_)) 

 

EXAC$THIAZIDES_DIUR_1<-as.factor(EXAC$THIAZIDES_DIUR_1) 

 

EXAC%<>%mutate(BIGUANIDES_1=case_when(BIGUANIDES=="0"~"N",BIGUANIDE

S=="1"~"Y",TRUE~NA_character_)) 

 

EXAC$BIGUANIDES_1<-as.factor(EXAC$BIGUANIDES_1) 

 

EXAC%<>%mutate(DPP4_1=case_when(DPP4=="0"~"N",DPP4=="1"~"Y",DPP4=="2"~"

Y",DPP4=="3"~"Y",TRUE~NA_character_)) 

 

EXAC$DPP4_1<-as.factor(EXAC$DPP4_1) 

 

EXAC%<>%mutate(DPP4_BIGUANIDES_1=case_when(DPP4_BIGUANIDES=="0"~"N",

DPP4_BIGUANIDES=="1"~"Y",TRUE~NA_character_)) 

 

EXAC$DPP4_BIGUANIDES_1<-as.factor(EXAC$DPP4_BIGUANIDES_1) 

 

EXAC%<>%mutate(GLPR_AGONIST_1=case_when(GLPR_AGONIST=="0"~"N",GLPR_

AGONIST=="1"~"Y",GLPR_AGONIST=="2"~"Y",TRUE~NA_character_)) 

 

EXAC$GLPR_AGONIST_1<-as.factor(EXAC$GLPR_AGONIST_1) 

 

EXAC%<>%mutate(GLUCOSIDASE_INHIB_1=case_when(GLUCOSIDASE_INHIB=="0

"~"N",GLUCOSIDASE_INHIB=="1"~"Y",GLUCOSIDASE_INHIB=="2"~"Y",GLUCOSI

DASE_INHIB=="3"~"Y",TRUE~NA_character_)) 
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EXAC$GLUCOSIDASE_INHIB_1<-as.factor(EXAC$GLUCOSIDASE_INHIB_1) 

 

EXAC%<>%mutate(INSULINS_1=case_when(INSULINS=="0"~"N",INSULINS=="1"~"Y

", 

                                   INSULINS=="2"~"Y",INSULINS=="3"~"Y", 

                                   INSULINS=="4"~"Y",INSULINS=="5"~"Y", 

                                   INSULINS=="6"~"Y",TRUE~NA_character_)) 

 

EXAC$INSULINS_1<-as.factor(EXAC$INSULINS_1) 

 

EXAC%<>%mutate(MEGLITINIDES_1=case_when(MEGLITINIDES=="0"~"N",MEGLIT

INIDES=="1"~"Y",TRUE~NA_character_)) 

 

EXAC$MEGLITINIDES_1<-as.factor(EXAC$MEGLITINIDES_1) 

 

EXAC%<>%mutate(SODIUM_TRANSPORT_INHIB_1=case_when(SODIUM_TRANSPO

RT_INHIB=="0"~"N",SODIUM_TRANSPORT_INHIB=="1"~"Y",TRUE~NA_character_)) 

 

EXAC$SODIUM_TRANSPORT_INHIB_1<-

as.factor(EXAC$SODIUM_TRANSPORT_INHIB_1) 

 

EXAC%<>%mutate(SULFONYLUREAS_1=case_when(SULFONYLUREAS=="0"~"N",S

ULFONYLUREAS=="1"~"Y",SULFONYLUREAS=="2"~"Y",SULFONYLUREAS=="3"~

"Y",TRUE~NA_character_)) 

 

EXAC$SULFONYLUREAS_1<-as.factor(EXAC$SULFONYLUREAS_1) 

 

EXAC%<>%mutate(SULFONYLUREAS_BIGUANIDES_1=case_when(SULFONYLURE

AS_BIGUANIDES=="0"~"N",SULFONYLUREAS_BIGUANIDES=="1"~"Y",TRUE~NA

_character_)) 

 

EXAC$SULFONYLUREAS_BIGUANIDES_1<-

as.factor(EXAC$SULFONYLUREAS_BIGUANIDES_1) 
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EXAC%<>%mutate(THIAZOLIDINEDIONE_1=case_when(THIAZOLIDINEDIONE=="0

"~"N",THIAZOLIDINEDIONE=="1"~"Y",TRUE~NA_character_)) 

 

EXAC$THIAZOLIDINEDIONE_1<-as.factor(EXAC$THIAZOLIDINEDIONE_1) 

 

 

EXAC%<>%mutate(ATENOLOL_1=case_when(ATENOLOL=="1"~"Y",TRUE~NA_chara

cter_)) 

 

EXAC$ATENOLOL_1<-as.factor(EXAC$ATENOLOL_1) 

 

fct_explicit_na(EXAC$ATENOLOL_1,na_level="N") 

EXAC%<>%mutate(ATENOLOL_1=fct_explicit_na(ATENOLOL_1,na_level="N")) 

 

EXAC%<>%mutate(BISOPROLOL_1=case_when(BISOPROLOL=="1"~"Y",TRUE~NA_c

haracter_)) 

 

EXAC$BISOPROLOL_1<-as.factor(EXAC$BISOPROLOL_1) 

 

fct_explicit_na(EXAC$BISOPROLOL_1,na_level="N") 

EXAC%<>%mutate(BISOPROLOL_1=fct_explicit_na(BISOPROLOL_1,na_level="N")) 

 

 

EXAC%<>%mutate(CLOPIDOGREL_1=case_when(CLOPIDOGREL=="1"~"Y",TRUE~N

A_character_)) 

 

EXAC$CLOPIDOGREL_1<-as.factor(EXAC$CLOPIDOGREL_1) 

 

fct_explicit_na(EXAC$CLOPIDOGREL_1,na_level="N") 

EXAC%<>%mutate(CLOPIDOGREL_1=fct_explicit_na(CLOPIDOGREL_1,na_level="N")) 

 

 

EXAC%<>%mutate(NEBIVOLOL_1=case_when(NEBIVOLOL=="1"~"Y",TRUE~NA_cha

racter_)) 
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EXAC$NEBIVOLOL_1<-as.factor(EXAC$NEBIVOLOL_1) 

 

fct_explicit_na(EXAC$NEBIVOLOL_1,na_level="N") 

EXAC%<>%mutate(NEBIVOLOL_1=fct_explicit_na(NEBIVOLOL_1,na_level="N")) 

 

 

 

 

 

 

 

EXAC$ASPIRIN[is.na(EXAC$ASPIRIN)]<-0 

EXAC$ABCIXIMAB[is.na(EXAC$ABCIXIMAB)]<-0 

EXAC$ASPDIP[is.na(EXAC$ASPDIP)]<-0 

EXAC$CARB[is.na(EXAC$CARB)]<-0 

EXAC$DIP[is.na(EXAC$DIP)]<-0 

EXAC$ETHICO[is.na(EXAC$ETHICO)]<-0 

EXAC$ILO[is.na(EXAC$ILO)]<-0 

EXAC$ICO[is.na(EXAC$ICO)]<-0 

EXAC$MESOGLYCAN[is.na(EXAC$MESOGLYCAN)]<-0 

EXAC$OZAGREL[is.na(EXAC$OZAGREL)]<-0 

EXAC$SARPO[is.na(EXAC$SARPO)]<-0 

EXAC$PRAS[is.na(EXAC$PRAS)]<-0 

EXAC$PAI[is.na(EXAC$PAI)]<-0 

EXAC$TICA[is.na(EXAC$TICA)]<-0 

EXAC$TICLO[is.na(EXAC$TICLO)]<-0 

EXAC$TRIF[is.na(EXAC$TRIF)]<-0 

EXAC$TIRO[is.na(EXAC$TIRO)]<-0 

EXAC$TREPR[is.na(EXAC$TREPR)]<-0 

 

EXAC$ASPIRIN<-as.factor(EXAC$ASPIRIN) 
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EXAC$ASPIRIN<-relevel(EXAC$ASPIRIN,ref="0") 

 

 

EXAC$DIABETES<-as.factor(EXAC$DIABETES) 

fct_explicit_na(EXAC$DIABETES,na_level="N") 

EXAC%<>%mutate(DIABETES=fct_explicit_na(DIABETES,na_level="N")) 

 

fct_explicit_na(EXAC$HYPERTENSION,na_level="N") 

EXAC%<>%mutate(HYPERTENSION=fct_explicit_na(HYPERTENSION,na_level="N")) 

 

fct_explicit_na(EXAC$HYPERCHOLESTEROL,na_level="N") 

EXAC%<>%mutate(HYPERCHOLESTEROL=fct_explicit_na(HYPERCHOLESTEROL,na

_level="N")) 

 

fct_explicit_na(EXAC$PAD,na_level="N") 

EXAC%<>%mutate(PAD=fct_explicit_na(PAD,na_level="N")) 

 

fct_explicit_na(EXAC$CAD,na_level="N") 

EXAC%<>%mutate(CAD=fct_explicit_na(CAD,na_level="N")) 

 

fct_explicit_na(EXAC$PREV_MI,na_level="N") 

EXAC%<>%mutate(PREV_MI=fct_explicit_na(PREV_MI,na_level="N")) 

 

fct_explicit_na(EXAC$PREV_STROKE,na_level="N") 

EXAC%<>%mutate(PREV_STROKE=fct_explicit_na(PREV_STROKE,na_level="N")) 

 

EXAC$TOTAL_EXAC[is.na(EXAC$TOTAL_EXAC)]<-0 

EXAC$MODERATE[is.na(EXAC$MODERATE)]<-0 

EXAC$SEVERE[is.na(EXAC$SEVERE)]<-0 

 

 

EXAC%<>%mutate(RACE_CODE=case_when(RACE=="AMERICAN INDIAN OR 

ALASKA NATIVE"~"OTHER", 
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                                  RACE=="ASIAN"~"ASIAN", 

                                  RACE=="BLACK OR AFRICAN AMERICAN"~"OTHER", 

                                  RACE=="MULTIPLE"~"OTHER", 

                                  RACE=="NATIVE HAWAIIAN OR OTHER PACIFIC 

ISLANDER"~"OTHER", 

                                  RACE=="WHITE"~"WHITE",TRUE~NA_character_)) 

 

EXAC$RACE_CODE<-as.character(EXAC$RACE_CODE) 

 

EXAC$PREVEXCT<-as.factor(EXAC$PREVEXCT) 

 

EXAC$SMKBLN<-as.factor(EXAC$SMKBLN) 

 

EXAC$BB_1<-paste(EXAC$SELEC_B_BLOCK_1,EXAC$NON_SELEC_B_BLOCK_1) 

 

EXAC%<>%mutate(BB_2=case_when(BB_1=="N N"~"N",BB_1=="N Y"~"Y", 

                             BB_1=="Y N"~"Y",BB_1=="Y Y"~"Y",TRUE~NA_character_)) 

 

EXAC$BB_2<-as.factor(EXAC$BB_2) 

 

EXAC$ACEIARB_1<-paste(EXAC$ACEI_1,EXAC$ARB_1) 

 

EXAC%<>%mutate(ACEIARB_2=case_when(ACEIARB_1=="N 

N"~"N",ACEIARB_1=="N Y"~"Y", 

                                  ACEIARB_1=="Y N"~"Y",ACEIARB_1=="Y 

Y"~"Y",TRUE~NA_character_)) 

 

EXAC$ACEIARB_2<-as.factor(EXAC$ACEIARB_2) 

 

 

 

EXAC$IHD_CAD<-paste(EXAC$IHDIN,EXAC$CAD) 
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EXAC%<>%mutate(IHD_CAD_1=case_when(IHD_CAD=="0 N"~"N",IHD_CAD=="0 

Y"~"Y", 

                                  IHD_CAD=="1 N"~"Y",IHD_CAD=="1 

Y"~"Y",TRUE~NA_character_)) 

 

EXAC$IHD_CAD_1<-as.factor(EXAC$IHD_CAD_1) 

 

 

EXAC%<>%mutate(ASP_CLOPIDOGREL_1=case_when(ASP_CLOPIDOGREL=="1"~"Y

",TRUE~NA_character_)) 

 

EXAC$ASP_CLOPIDOGREL_1<-as.factor(EXAC$ASP_CLOPIDOGREL_1) 

 

fct_explicit_na(EXAC$ASP_CLOPIDOGREL_1,na_level="N") 

EXAC%<>%mutate(ASP_CLOPIDOGREL_1=fct_explicit_na(ASP_CLOPIDOGREL_1,na

_level="N")) 

 

 

EXAC%<>%mutate(ASP_STAT_CLOPIDOGREL_1=case_when(ASP_STAT_CLOPIDOG

REL=="1"~"Y",TRUE~NA_character_)) 

 

EXAC$ASP_STAT_CLOPIDOGREL_1<-

as.factor(EXAC$ASP_STAT_CLOPIDOGREL_1) 

 

fct_explicit_na(EXAC$ASP_STAT_CLOPIDOGREL_1,na_level="N") 

EXAC%<>%mutate(ASP_STAT_CLOPIDOGREL_1=fct_explicit_na(ASP_STAT_CLOPI

DOGREL_1,na_level="N")) 

 

 

EXAC%<>%mutate(STAT_CLOPIDOGREL_1=case_when(STAT_CLOPIDOGREL=="1"

~"Y",TRUE~NA_character_)) 

 

EXAC$STAT_CLOPIDOGREL_1<-as.factor(EXAC$STAT_CLOPIDOGREL_1) 

 

fct_explicit_na(EXAC$STAT_CLOPIDOGREL_1,na_level="N") 
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EXAC%<>%mutate(STAT_CLOPIDOGREL_1=fct_explicit_na(STAT_CLOPIDOGREL_1,

na_level="N")) 

 

fct_explicit_na(EXAC$ACEIARB_2,na_level="N") 

EXAC%<>%mutate(ACEIARB_2=fct_explicit_na(ACEIARB_2,na_level="N")) 

 

fct_explicit_na(EXAC$BB_2,na_level="N") 

EXAC%<>%mutate(BB_2=fct_explicit_na(BB_2,na_level="N")) 

 

fct_explicit_na(EXAC$ANTI_COAG_1,na_level="N") 

EXAC%<>%mutate(ANTI_COAG_1=fct_explicit_na(ANTI_COAG_1,na_level="N")) 

 

fct_explicit_na(EXAC$ANTI_PLATE_1,na_level="N") 

EXAC%<>%mutate(ANTI_PLATE_1=fct_explicit_na(ANTI_PLATE_1,na_level="N")) 

 

fct_explicit_na(EXAC$DIHYDROPYRIDINE_1,na_level="N") 

EXAC%<>%mutate(DIHYDROPYRIDINE_1=fct_explicit_na(DIHYDROPYRIDINE_1,na

_level="N")) 

 

fct_explicit_na(EXAC$LONG_NITRATES_1,na_level="N") 

EXAC%<>%mutate(LONG_NITRATES_1=fct_explicit_na(LONG_NITRATES_1,na_level

="N")) 

 

fct_explicit_na(EXAC$Loop_1,na_level="N") 

EXAC%<>%mutate(Loop_1=fct_explicit_na(Loop_1,na_level="N")) 

 

fct_explicit_na(EXAC$NON_DIHYDROPYRIDINE_1,na_level="N") 

EXAC%<>%mutate(NON_DIHYDROPYRIDINE_1=fct_explicit_na(NON_DIHYDROPY

RIDINE_1,na_level="N")) 

 

fct_explicit_na(EXAC$STATINS_1,na_level="N") 

EXAC%<>%mutate(STATINS_1=fct_explicit_na(STATINS_1,na_level="N")) 
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fct_explicit_na(EXAC$THIAZIDES_DIUR_1,na_level="N") 

EXAC%<>%mutate(THIAZIDES_DIUR_1=fct_explicit_na(THIAZIDES_DIUR_1,na_level

="N")) 

 

fct_explicit_na(EXAC$BIGUANIDES_1,na_level="N") 

EXAC%<>%mutate(BIGUANIDES_1=fct_explicit_na(BIGUANIDES_1,na_level="N")) 

 

fct_explicit_na(EXAC$INSULINS_1,na_level="N") 

EXAC%<>%mutate(INSULINS_1=fct_explicit_na(INSULINS_1,na_level="N")) 

 

 

fct_explicit_na(EXAC$SULFONYLUREAS_1,na_level="N") 

EXAC%<>%mutate(SULFONYLUREAS_1=fct_explicit_na(SULFONYLUREAS_1,na_lev

el="N")) 

 

EXAC$HYPERTENSION<-relevel(EXAC$HYPERTENSION,ref="N") 

 

EXAC$HYPERCHOLESTEROL<-relevel(EXAC$HYPERCHOLESTEROL,ref="N") 

 

EXAC$PAD<-relevel(EXAC$PAD,ref="N") 

 

EXAC$CAD<-relevel(EXAC$CAD,ref="N") 

 

EXAC$PREV_MI<-relevel(EXAC$PREV_MI,ref="N") 

 

EXAC$PREV_STROKE<-relevel(EXAC$PREV_STROKE,ref="N") 

 

EXAC$DIABETES<-relevel(EXAC$DIABETES,ref="N") 

 

EXAC$ATENOLOL_1<-relevel(EXAC$ATENOLOL_1,ref="N") 

 

EXAC$BISOPROLOL_1<-relevel(EXAC$BISOPROLOL_1,ref="N") 
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EXAC$NEBIVOLOL_1<-relevel(EXAC$NEBIVOLOL_1,ref="N") 

 

EXAC$CLOPIDOGREL_1<-relevel(EXAC$CLOPIDOGREL_1,ref="N") 

 

EXAC$SMKBLN<-relevel(EXAC$SMKBLN,ref="2") 

 

EXAC$PREVEXCT<-relevel(EXAC$PREVEXCT,ref="0") 

 

EXAC%<>%mutate(TREATMENT_YEARS_1=(EXAC$TREATMENT_YEARS)+1) 

EXAC%<>%mutate(TREATMENT_YEARS_LOG=log(EXAC$TREATMENT_YEARS_1)) 

EXAC%<>%distinct(USUBJID,AGE,.keep_all=TRUE) 

EXAC$CV_CRITERIA<-EXAC$RACE<-EXAC$SITEID<-EXAC$LSTCT<-

EXAC$os_yrs<-EXAC$ALPHABETABLOCK<-NULL 

EXAC$ACEI<-EXAC$ARB<-EXAC$ANTI_COAG<-EXAC$ANTI_PLATE<-

EXAC$CHOL_BILE_ABSORB_INHIB<-EXAC$CLASS3<-NULL 

EXAC$DIHYDROPYRIDINE<-EXAC$DIR_RENIN_INHIB<-EXAC$Fibrates<-

EXAC$LONG_NITRATES<-EXAC$Loop<-EXAC$MRA<-NULL 

EXAC$Niacin<-EXAC$NON_DIHYDROPYRIDINE<-

EXAC$NON_SELEC_B_BLOCK<-EXAC$Other<-EXAC$SUPPLEMENTS<-

EXAC$SELEC_B_BLOCK<-NULL 

EXAC$SHORT_NITRATES<-EXAC$STATINS<-EXAC$THIAZIDES_DIUR<-

EXAC$NA.x<-EXAC$BIGUANIDES<-EXAC$DPP4<-EXAC$DPP4_BIGUANIDES<-

NULL 

EXAC$GLPR_AGONIST<-EXAC$GLUCOSIDASE_INHIB<-EXAC$INSULINS<-

EXAC$MEGLITINIDES<-EXAC$OTHER<-EXAC$SODIUM_TRANSPORT_INHIB<-

NULL 

EXAC$SULFONYLUREAS<-EXAC$SULFONYLUREAS_BIGUANIDES<-

EXAC$THIAZOLIDINEDIONE<-EXAC$NA.y<-EXAC$TREATED_FOR_PAD<-NULL 

EXAC$`CV risk criteria at study entry`<-EXAC$DIABETES_ORGAN_DISEASE<-

EXAC$DIABETES_EYES<-EXAC$DIABETES_KIDNEYS<-NULL 

EXAC$DIABETES_LIMBS<-EXAC$`History of CV disease at study entry`<-EXAC$`Met 

protocol CV entry criteria`<-NULL 

EXAC$GLUC_CAT<-EXAC$BB_1<-EXAC$ACEIARB_1<-NULL 

EXAC$ATENOLOL<-EXAC$BISOPROLOL<-EXAC$CLOPIDOGREL<-

EXAC$NEBIVOLOL<-NULL 
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EXAC%<>%mutate(CNSR_EXAC_TOTAL=case_when(CNSR_EXAC_TOTAL=="0"~1,C

NSR_EXAC_TOTAL=="1"~0,TRUE~NA_real_)) 

EXAC%<>%mutate(CNSR_EXAC_MOD=case_when(CNSR_EXAC_MOD=="0"~1,CNSR

_EXAC_MOD=="1"~0,TRUE~NA_real_)) 

EXAC%<>%mutate(CNSR_EXAC_SEV=case_when(CNSR_EXAC_SEV=="0"~1,CNSR_

EXAC_SEV=="1"~0,TRUE~NA_real_)) 

EXAC%<>%mutate(CNSR_CVCOMP=case_when(CNSR_CVCOMP=="0"~1,CNSR_CVC

OMP=="1"~0,TRUE~NA_real_)) 

 

EXAC$CNSR_EXAC_TOTAL<-as.factor(EXAC$CNSR_EXAC_TOTAL) 

EXAC$CNSR_EXAC_MOD<-as.factor(EXAC$CNSR_EXAC_MOD) 

EXAC$CNSR_EXAC_SEV<-as.factor(EXAC$CNSR_EXAC_SEV) 

EXAC$CNSR_CVCOMP<-as.factor(EXAC$CNSR_CVCOMP) 

 

EXAC_TABLE<-

tableby(~AGE+SEX+TOTAL_EXAC+TRTPN+BMI+SMKBLN+PACK_YRS+RACE_CO

DE+DIABETES+ 

                     

HYPERCHOLESTEROL+PAD+CAD+HYPERTENSION+PREV_MI+PREV_STROKE+ 

                     

ALPHABETABLOCK_1+ACEI_1+ARB_1+ANTI_PLATE_1+ANTI_COAG_1+ 

                     

CHOL_BILE_ABSORB_INHIB_1+CLASS3_1+DIHYDROPYRIDINE_1+DIR_RENIN_I

NHIB_1+ 

                     

Fibrates_1+LONG_NITRATES_1+Loop_1+MRA_1+NON_DIHYDROPYRIDINE_1+ 

                     

NON_SELEC_B_BLOCK_1+SELEC_B_BLOCK_1+ACEIARB_2+BB_2+SHORT_NITR

ATES_1+ 

                     

STATINS_1+THIAZIDES_DIUR_1+BIGUANIDES_1+DPP4_1+GLPR_AGONIST_1+ 

                     

GLUCOSIDASE_INHIB_1+INSULINS_1+MEGLITINIDES_1+SULFONYLUREAS_1+ 

                     

THIAZOLIDINEDIONE_1+DPP4_BIGUANIDES_1+SODIUM_TRANSPORT_INHIB_1+ 

                     SULFONYLUREAS_BIGUANIDES_1+GLUCOSE+PREVEXCT+FEV1+ 
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IHD_CAD_1+HF+CNSR_EXAC_TOTAL+CNSR_EXAC_MOD+CNSR_EXAC_SEV+CN

SR_CVCOMP+ATENOLOL_1+BISOPROLOL_1+ 

                     

NEBIVOLOL_1+CLOPIDOGREL_1+ASPIRIN,data=subset(EXAC,INTENTION_TO_TRE

AT=="Y"))  

 

 

summary(EXAC_TABLE,title="EXAC_TABLE") 

 

EXAC$CNSR_EXAC_TOTAL<-as.numeric(EXAC$CNSR_EXAC_TOTAL) 

EXAC%<>%mutate(CNSR_EXAC_TOTAL=case_when(CNSR_EXAC_TOTAL=="1"~0,C

NSR_EXAC_TOTAL=="2"~1,TRUE~NA_real_)) 

EXAC$CNSR_EXAC_MOD<-as.numeric(EXAC$CNSR_EXAC_MOD) 

EXAC%<>%mutate(CNSR_EXAC_MOD=case_when(CNSR_EXAC_MOD=="1"~0,CNSR

_EXAC_MOD=="2"~1,TRUE~NA_real_)) 

EXAC$CNSR_EXAC_SEV<-as.numeric(EXAC$CNSR_EXAC_SEV) 

EXAC%<>%mutate(CNSR_EXAC_SEV=case_when(CNSR_EXAC_SEV=="1"~0,CNSR_

EXAC_SEV=="2"~1,TRUE~NA_real_)) 

EXAC$CNSR_CVCOMP<-as.numeric(EXAC$CNSR_CVCOMP) 

EXAC%<>%mutate(CNSR_CVCOMP=case_when(CNSR_CVCOMP=="1"~0,CNSR_CVC

OMP=="2"~1,TRUE~NA_real_)) 

 

coxph(Surv(TIME_EXAC_SEV,CNSR_EXAC_SEV)~AGE+SEX+BMI+SMKBLN+PACK

_YRS+IHD_CAD_1+PAD+HF+PREV_STROKE+HYPERTENSION+ 

        HYPERCHOLESTEROL+DIABETES+PREVEXCT+ASPIRIN, 

      

data=subset(EXAC,INTENTION_TO_TREAT=="Y"&ASP_STAT_CLOPIDOGREL_1=="

N"& 

                    

ASP_CLOPIDOGREL_1=="N"&STAT_CLOPIDOGREL_1=="N"&CLOPIDOGREL_1=="

N"& 

                    

ABCIXIMAB=="0"&ASPDIP=="0"&CARB=="0"&DIP=="0"&ETHICO=="0"& 

                    ILO=="0"&ICO=="0"&MESOGLYCAN=="0"&OZAGREL=="0"& 

                    SARPO=="0"&PRAS=="0"&PAI=="0"&TICA=="0"&TICLO=="0"& 
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TRIF=="0"&TIRO=="0"&TREPR=="0"))%>%gtsummary::tbl_regression(exp=TRUE) 

 

EXAC_RATE<-glm.nb(TOTAL_EXAC~AGE+SEX+FEV1+SMKBLN+ 

                    PREVEXCT+TRTPN+IHD_CAD_1+PAD+PREV_STROKE+HF+ 

                    

HYPERTENSION+HYPERCHOLESTEROL+STATINS_1,data=subset(EXAC,INTENTIO

N_TO_TREAT=="Y"),offset(TREATMENT_YEARS_1)) 

 

summary(EXAC_RATE) 

exp(coef(EXAC_RATE)) 

 

install.packages(c("broom")) 

library("broom") 

install.packages(c("gtsummary")) 

library("gtsummary") 

 

library("MASS") 

library("magrittr") 

 

#PROPENSITY SCORE MATCHING 

 

describe(ACM) 

nrow(ACM) 

 

ACM$CV_CRITERIA<-ACM$RACE<-ACM$SITEID<-ACM$LSTCT<-

ACM$TREATMENT_YEARS<-ACM$os_yrs<-ACM$ALPHABETABLOCK<-NULL 

ACM$ACEI<-ACM$ARB<-ACM$ANTI_COAG<-ACM$ANTI_PLATE<-

ACM$CHOL_BILE_ABSORB_INHIB<-ACM$CLASS3<-NULL 

ACM$DIHYDROPYRIDINE<-ACM$DIR_RENIN_INHIB<-ACM$Fibrates<-

ACM$LONG_NITRATES<-ACM$Loop<-ACM$MRA<-NULL 

ACM$Niacin<-ACM$NON_DIHYDROPYRIDINE<-ACM$NON_SELEC_B_BLOCK<-

ACM$Other<-ACM$SUPPLEMENTS<-ACM$SELEC_B_BLOCK<-NULL 

ACM$SHORT_NITRATES<-ACM$STATINS<-ACM$THIAZIDES_DIUR<-

ACM$NA.x<-ACM$BIGUANIDES<-ACM$DPP4<-ACM$DPP4_BIGUANIDES<-NULL 
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ACM$GLPR_AGONIST<-ACM$GLUCOSIDASE_INHIB<-ACM$INSULINS<-

ACM$MEGLITINIDES<-ACM$OTHER<-ACM$SODIUM_TRANSPORT_INHIB<-

NULL 

ACM$SULFONYLUREAS<-ACM$SULFONYLUREAS_BIGUANIDES<-

ACM$THIAZOLIDINEDIONE<-ACM$NA.y<-ACM$TREATED_FOR_PAD<-NULL 

ACM$`CV risk criteria at study entry`<-ACM$DIABETES_ORGAN_DISEASE<-

ACM$DIABETES_EYES<-ACM$DIABETES_KIDNEYS<-NULL 

ACM$DIABETES_LIMBS<-ACM$`History of CV disease at study entry`<-ACM$`Met 

protocol CV entry criteria`<-NULL 

ACM$GLUC_CAT<-ACM$BB_1<-ACM$ACEIARB_1<-NULL 

ACM$ATENOLOL<-ACM$BISOPROLOL<-ACM$CLOPIDOGREL<-

ACM$NEBIVOLOL<-ACM$ASPIRIN<-NULL 

 

 

 

 

 

 

 

ACM_PS<-matchit(ASPIRIN~PAD+PREV_STROKE+ 

          

IHD_CAD_1,data=subset(ACM,INTENTION_TO_TREAT=="Y"&ASP_STAT_CLOPIDO

GREL_1=="N"& 

                              

ASP_CLOPIDOGREL_1=="N"&STAT_CLOPIDOGREL_1=="N"&CLOPIDOGREL_1=="

N"& 

                              

ABCIXIMAB=="0"&ASPDIP=="0"&CARB=="0"&DIP=="0"&ETHICO=="0"& 

                              ILO=="0"&ICO=="0"&MESOGLYCAN=="0"&OZAGREL=="0"& 

                              SARPO=="0"&PRAS=="0"&PAI=="0"&TICA=="0"&TICLO=="0"& 

                              

TRIF=="0"&TIRO=="0"&TREPR=="0"),method="nearest",caliper=0.2,distance="logit") 

summary(ACM_PS,standardize=TRUE) 

ACM_PS$match.matrix 

ACM_PS$discarded 
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bal.tab(ACM_PS,m.threshold=0.1,un=TRUE) 

bal.tab(ACM_PS,v.threshold=2) 

 

ACM_PS1<-match.data(ACM_PS) 

head(ACM_PS1) 

 

ACM_PS1$STATUS<-as.factor(ACM_PS1$STATUS) 

 

test_TABLE<-

tableby(~AGE+SEX+TRTPN+BMI+SMKBLN+RACE_CODE+DIABETES+ 

                     

HYPERCHOLESTEROL+PAD+CAD+HYPERTENSION+PREV_MI+PREV_STROKE+ 

                     

ALPHABETABLOCK_1+ACEI_1+ARB_1+ANTI_PLATE_1+ANTI_COAG_1+ 

                     

CHOL_BILE_ABSORB_INHIB_1+CLASS3_1+DIHYDROPYRIDINE_1+DIR_RENIN_I

NHIB_1+ 

                     

Fibrates_1+LONG_NITRATES_1+Loop_1+MRA_1+NON_DIHYDROPYRIDINE_1+ 

                     

NON_SELEC_B_BLOCK_1+SELEC_B_BLOCK_1+ACEIARB_2+BB_2+SHORT_NITR

ATES_1+ 

                     

STATINS_1+THIAZIDES_DIUR_1+BIGUANIDES_1+DPP4_1+GLPR_AGONIST_1+ 

                     

GLUCOSIDASE_INHIB_1+INSULINS_1+MEGLITINIDES_1+SULFONYLUREAS_1+ 

                     

THIAZOLIDINEDIONE_1+DPP4_BIGUANIDES_1+SODIUM_TRANSPORT_INHIB_1+ 

                     

SULFONYLUREAS_BIGUANIDES_1+STATUS+GLUCOSE+PREVEXCT+ADY+FEV1+ 

                     CV_RISK_CRIT_ONLY+IHDIN+HF+ATENOLOL_1+BISOPROLOL_1+ 

                      

NEBIVOLOL_1+CLOPIDOGREL_1+ASPIRIN,data=subset(ACM_PS1,INTENTION_TO_

TREAT=="Y"))  

 

summary(test_TABLE,title="test_TABLE") 
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test_TABLE<-

tableby(~AGE+SEX+TRTPN+BMI+SMKBLN+RACE_CODE+DIABETES+ 

                      

HYPERCHOLESTEROL+PAD+CAD+HYPERTENSION+PREV_MI+PREV_STROKE+ 

                      ALPHABETABLOCK_1+ACEI_1+ARB_1+ANTI_COAG_1+ 

                      

CHOL_BILE_ABSORB_INHIB_1+CLASS3_1+DIHYDROPYRIDINE_1+DIR_RENIN_I

NHIB_1+ 

                      

Fibrates_1+LONG_NITRATES_1+Loop_1+MRA_1+NON_DIHYDROPYRIDINE_1+ 

                      

NON_SELEC_B_BLOCK_1+SELEC_B_BLOCK_1+ACEIARB_2+BB_2+SHORT_NITR

ATES_1+ 

                      

STATINS_1+THIAZIDES_DIUR_1+BIGUANIDES_1+DPP4_1+GLPR_AGONIST_1+ 

                      

GLUCOSIDASE_INHIB_1+INSULINS_1+MEGLITINIDES_1+SULFONYLUREAS_1+ 

                      

THIAZOLIDINEDIONE_1+DPP4_BIGUANIDES_1+SODIUM_TRANSPORT_INHIB_1+ 

                      

SULFONYLUREAS_BIGUANIDES_1+STATUS+GLUCOSE+PREVEXCT+ADY+FEV1+ 

                      CV_RISK_CRIT_ONLY+IHDIN+HF+ATENOLOL_1+BISOPROLOL_1+ 

                      

NEBIVOLOL_1+CLOPIDOGREL_1+ASPIRIN,data=subset(ACM_PS1,INTENTION_TO_

TREAT=="Y"&ASPIRIN=="1"))  

 

ACM_PS1$STATUS<-as.numeric(ACM_PS1$STATUS) 

ACM_PS1%<>%mutate(STATUS=case_when(STATUS=="1"~0,STATUS=="2"~1,TRUE~

NA_real_)) 

 

 

coxph(Surv(ADY_FULL,STATUS)~AGE+SEX+BMI+RACE_CODE+ 

        ASPIRIN+ 

        DIABETES+HYPERTENSION+ 

        HYPERCHOLESTEROL+SMKBLN+FEV1+HF, 
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data=subset(ACM_PS1,INTENTION_TO_TREAT=="Y"&ASP_STAT_CLOPIDOGREL_1

=="N"& 

                    

ASP_CLOPIDOGREL_1=="N"&STAT_CLOPIDOGREL_1=="N"&CLOPIDOGREL_1=="

N"& 

                    

ABCIXIMAB=="0"&ASPDIP=="0"&CARB=="0"&DIP=="0"&ETHICO=="0"& 

                    ILO=="0"&ICO=="0"&MESOGLYCAN=="0"&OZAGREL=="0"& 

                    SARPO=="0"&PRAS=="0"&PAI=="0"&TICA=="0"&TICLO=="0"& 

                    

TRIF=="0"&TIRO=="0"&TREPR=="0"))%>%gtsummary::tbl_regression(exp=TRUE) 

 

 

str(EXAC) 

 

EXAC$CV_CRITERIA<-EXAC$RACE<-EXAC$SITEID<-EXAC$LSTCT<-

EXAC$TREATMENT_YEARS<-EXAC$os_yrs<-EXAC$ALPHABETABLOCK<-NULL 

EXAC$ACEI<-EXAC$ARB<-EXAC$ANTI_COAG<-EXAC$ANTI_PLATE<-

EXAC$CHOL_BILE_ABSORB_INHIB<-EXAC$CLASS3<-NULL 

EXAC$DIHYDROPYRIDINE<-EXAC$DIR_RENIN_INHIB<-EXAC$Fibrates<-

EXAC$LONG_NITRATES<-EXAC$Loop<-EXAC$MRA<-NULL 

EXAC$Niacin<-EXAC$NON_DIHYDROPYRIDINE<-

EXAC$NON_SELEC_B_BLOCK<-EXAC$Other<-EXAC$SUPPLEMENTS<-

EXAC$SELEC_B_BLOCK<-NULL 

EXAC$SHORT_NITRATES<-EXAC$STATINS<-EXAC$THIAZIDES_DIUR<-

EXAC$NA.x<-EXAC$BIGUANIDES<-EXAC$DPP4<-EXAC$DPP4_BIGUANIDES<-

NULL 

EXAC$GLPR_AGONIST<-EXAC$GLUCOSIDASE_INHIB<-EXAC$INSULINS<-

EXAC$MEGLITINIDES<-EXAC$OTHER<-EXAC$SODIUM_TRANSPORT_INHIB<-

NULL 

EXAC$SULFONYLUREAS<-EXAC$SULFONYLUREAS_BIGUANIDES<-

EXAC$THIAZOLIDINEDIONE<-EXAC$NA.y<-EXAC$TREATED_FOR_PAD<-NULL 

EXAC$`CV risk criteria at study entry`<-EXAC$DIABETES_ORGAN_DISEASE<-

EXAC$DIABETES_EYES<-EXAC$DIABETES_KIDNEYS<-NULL 

EXAC$DIABETES_LIMBS<-EXAC$`History of CV disease at study entry`<-EXAC$`Met 

protocol CV entry criteria`<-NULL 

EXAC$GLUC_CAT<-EXAC$BB_1<-EXAC$ACEIARB_1<-NULL 
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EXAC$ATENOLOL<-EXAC$BISOPROLOL<-EXAC$CLOPIDOGREL<-

EXAC$NEBIVOLOL<-EXAC$ASPIRIN<-NULL 

 

 

EXAC_PS<-matchit(ASPIRIN~PAD+PREV_STROKE+ 

                  

IHD_CAD_1,data=subset(EXAC,INTENTION_TO_TREAT=="Y"&ASP_STAT_CLOPID

OGREL_1=="N"& 

                                          

ASP_CLOPIDOGREL_1=="N"&STAT_CLOPIDOGREL_1=="N"&CLOPIDOGREL_1=="

N"& 

                                          

ABCIXIMAB=="0"&ASPDIP=="0"&CARB=="0"&DIP=="0"&ETHICO=="0"& 

                                          

ILO=="0"&ICO=="0"&MESOGLYCAN=="0"&OZAGREL=="0"& 

                                          

SARPO=="0"&PRAS=="0"&PAI=="0"&TICA=="0"&TICLO=="0"& 

                                          

TRIF=="0"&TIRO=="0"&TREPR=="0"),method="nearest",caliper=0.2,distance="logit") 

summary(EXAC_PS,standardize=TRUE) 

EXAC_PS$match.matrix 

EXAC_PS$discarded 

 

bal.tab(EXAC_PS,m.threshold=0.1,un=TRUE) 

bal.tab(EXAC_PS,v.threshold=2) 

 

EXAC_PS1<-match.data(EXAC_PS) 

head(EXAC_PS1) 

 

EXAC_PS1$CNSR_EXAC_TOTAL<-as.factor(EXAC_PS1$CNSR_EXAC_TOTAL) 

EXAC_PS1$CNSR_EXAC_MOD<-as.factor(EXAC_PS1$CNSR_EXAC_MOD) 

EXAC_PS1$CNSR_EXAC_SEV<-as.factor(EXAC_PS1$CNSR_EXAC_SEV) 

EXAC_PS1$CNSR_CVCOMP<-as.factor(EXAC_PS1$CNSR_CVCOMP) 
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EXAC_TABLE<-

tableby(~AGE+SEX+TOTAL_EXAC+TRTPN+BMI+SMKBLN+PACK_YRS+RACE_CO

DE+DIABETES+ 

                      

HYPERCHOLESTEROL+PAD+CAD+HYPERTENSION+PREV_MI+PREV_STROKE+ 

                      

ALPHABETABLOCK_1+ACEI_1+ARB_1+ANTI_PLATE_1+ANTI_COAG_1+ 

                      

CHOL_BILE_ABSORB_INHIB_1+CLASS3_1+DIHYDROPYRIDINE_1+DIR_RENIN_I

NHIB_1+ 

                      

Fibrates_1+LONG_NITRATES_1+Loop_1+MRA_1+NON_DIHYDROPYRIDINE_1+ 

                      

NON_SELEC_B_BLOCK_1+SELEC_B_BLOCK_1+ACEIARB_2+BB_2+SHORT_NITR

ATES_1+ 

                      

STATINS_1+THIAZIDES_DIUR_1+BIGUANIDES_1+DPP4_1+GLPR_AGONIST_1+ 

                      

GLUCOSIDASE_INHIB_1+INSULINS_1+MEGLITINIDES_1+SULFONYLUREAS_1+ 

                      

THIAZOLIDINEDIONE_1+DPP4_BIGUANIDES_1+SODIUM_TRANSPORT_INHIB_1+ 

                      SULFONYLUREAS_BIGUANIDES_1+GLUCOSE+PREVEXCT+FEV1+ 

                      

IHD_CAD_1+HF+CNSR_EXAC_TOTAL+CNSR_EXAC_MOD+CNSR_EXAC_SEV+CN

SR_CVCOMP+ATENOLOL_1+BISOPROLOL_1+ 

                      

NEBIVOLOL_1+CLOPIDOGREL_1+ASPIRIN,data=subset(EXAC_PS1,INTENTION_TO

_TREAT=="Y"&ASP_STAT_CLOPIDOGREL_1=="N"& 

                                                                      

ASP_CLOPIDOGREL_1=="N"&STAT_CLOPIDOGREL_1=="N"&CLOPIDOGREL_1=="

N"& 

                                                                      

ABCIXIMAB=="0"&ASPDIP=="0"&CARB=="0"&DIP=="0"&ETHICO=="0"& 

                                                                      

ILO=="0"&ICO=="0"&MESOGLYCAN=="0"&OZAGREL=="0"& 

                                                                      

SARPO=="0"&PRAS=="0"&PAI=="0"&TICA=="0"&TICLO=="0"& 

                                                                      TRIF=="0"&TIRO=="0"&TREPR=="0"))  
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summary(EXAC_TABLE,title="EXAC_TABLE") 

 

EXAC_PS1$CNSR_EXAC_TOTAL<-as.numeric(EXAC_PS1$CNSR_EXAC_TOTAL) 

EXAC_PS1%<>%mutate(CNSR_EXAC_TOTAL=case_when(CNSR_EXAC_TOTAL=="1

"~0,CNSR_EXAC_TOTAL=="2"~1,TRUE~NA_real_)) 

EXAC_PS1$CNSR_EXAC_MOD<-as.numeric(EXAC_PS1$CNSR_EXAC_MOD) 

EXAC_PS1%<>%mutate(CNSR_EXAC_MOD=case_when(CNSR_EXAC_MOD=="1"~0,

CNSR_EXAC_MOD=="2"~1,TRUE~NA_real_)) 

EXAC_PS1$CNSR_EXAC_SEV<-as.numeric(EXAC_PS1$CNSR_EXAC_SEV) 

EXAC_PS1%<>%mutate(CNSR_EXAC_SEV=case_when(CNSR_EXAC_SEV=="1"~0,CN

SR_EXAC_SEV=="2"~1,TRUE~NA_real_)) 

EXAC_PS1$CNSR_CVCOMP<-as.numeric(EXAC_PS1$CNSR_CVCOMP) 

EXAC_PS1%<>%mutate(CNSR_CVCOMP=case_when(CNSR_CVCOMP=="1"~0,CNSR_

CVCOMP=="2"~1,TRUE~NA_real_)) 

 

coxph(Surv(TIME_EXAC_SEV,CNSR_EXAC_SEV)~AGE+SEX+BMI+SMKBLN+PACK

_YRS+TRTPN+SMKBLN+PACK_YRS+PREVEXCT+ 

        FEV1+ASPIRIN, 

      

data=subset(EXAC_PS1,INTENTION_TO_TREAT=="Y"&ASP_STAT_CLOPIDOGREL_

1=="N"& 

                    

ASP_CLOPIDOGREL_1=="N"&STAT_CLOPIDOGREL_1=="N"&CLOPIDOGREL_1=="

N"& 

                    

ABCIXIMAB=="0"&ASPDIP=="0"&CARB=="0"&DIP=="0"&ETHICO=="0"& 

                    ILO=="0"&ICO=="0"&MESOGLYCAN=="0"&OZAGREL=="0"& 

                    SARPO=="0"&PRAS=="0"&PAI=="0"&TICA=="0"&TICLO=="0"& 

                    

TRIF=="0"&TIRO=="0"&TREPR=="0"))%>%gtsummary::tbl_regression(exp=TRUE) 

 

IMPACT CODE 

library("survival","survminer") 

library("tidyverse","dplyr") 

library("tibble") 
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library(reshape2) 

library(lubridate) 

library(survival) 

library(survminer) 

library(forcats) 

library(arsenal) 

library("broom") 

library("gtsummary") 

library("MASS") 

library("MatchIt") 

library("Hmisc") 

library("nnet") 

library("tableone") 

library("cobalt") 

library("weights") 

library("rbounds") 

library("randomForest") 

library(arsenal) 

library("broom") 

library("magrittr") 

library("MatchThem") 

library("mice") 

 

#Load files 

 

SLA<-gsk_116855_adsl_v02 

LAB<-gsk_116855_adlb_v02 

HIST<-gsk_116855_admh_v02 

EVENTS<-gsk_116855_adadjud_v02 

FEV<-gsk_116855_adpft_v02 

ADEXAC<-gsk_116855_adexac_v02 

MEDS<-gsk_116855_adcm_v02 
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ADEXACA<-gsk_116855_adexaca_v02 

EVENTS2<-gsk_116855_adtte_v02 

SMOKE<-gsk_116855_adsu_v02 

ADV<-gsk_116855_adae_v02 

MACE<-gsk_116855_admace_v02 

 

 

SLA<-

dplyr::select(gsk_116855_adsl_v02,USUBJID,AAGE,SEX,ARMCD,ADTHDT,RACE,ITTF

L,RANDDT,BMIBL,CTRYGR1,W52ACTDT, 

                   

SMKBLN,PREVEX,DTHFL,DTHPHASE,PNEUHISN,TRTDUR,ACOUNTRY,AGEGR3) 

 

SLA%<>%mutate(PREVEXCT=case_when(PREVEX>=2~'>=2',PREVEX==1~'1',PREVEX

==0~'0')) 

 

colnames(SLA)[colnames(SLA)=="W52ACTDT"]<-"W52_END_DATE" 

colnames(SLA)[colnames(SLA)=="RANDDT"]<-"RANDOMISATION_DATE" 

colnames(SLA)[colnames(SLA)=="TRTDUR"]<-"TREATMENT_YEARS" 

colnames(SLA)[colnames(SLA)=="CTRYGR1"]<-"REGION" 

colnames(SLA)[colnames(SLA)=="BMIBL"]<-"BMI" 

colnames(SLA)[colnames(SLA)=="ITTFL"]<-"INTENTION_TO_TREAT" 

colnames(SLA)[colnames(SLA)=="PREVEXCT"]<-"PREV_EXAC" 

colnames(SLA)[colnames(SLA)=="PNEUHISN"]<-"PNEUMONIA" 

 

SLA%>%mutate(RANDOMISATION_DATE=ymd(RANDOMISATION_DATE),W52_EN

D_DATE=ymd(W52_END_DATE)) 

SLA$RANDOMISATION_DATE<-as.Date(SLA$RANDOMISATION_DATE) 

SLA$W52_END_DATE<-as.Date(SLA$W52_END_DATE) 

SLA%<>%mutate(os_yrs=as.duration(RANDOMISATION_DATE%-

-%W52_END_DATE)/dyears(1)) 
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LAB<-dplyr::select(gsk_116855_adlb_v02,USUBJID,PARAMLBL,AVISIT,AVAL) 

LAB[1,] 

colnames(LAB)[colnames(LAB)=="AVAL"]<-"GLUCOSE" 

LAB<-subset(LAB,PARAMLBL=="Glucose (mmol/L)") 

LAB<-subset(LAB,AVISIT=="Screening") 

LAB$PARAMLBL<-LAB$AVISIT<-NULL 

 

 

 

HIST<-dplyr::select(gsk_116855_admh_v02,USUBJID,ACAT,MHOCCUR) 

HIST[1,] 

HIST%<>%filter(ACAT=="Angina Pectoris"|ACAT=="Arrhythmia"|ACAT=="Congestive 

Heart Failure"|ACAT=="Coronary Artery Disease"| 

                 ACAT=="Myocardial Infarction"|ACAT=="Diabetes Mellitus"| 

                 ACAT=="Hypercholesterolemia"|ACAT=="Cerebrovascular 

Accident"|ACAT=="Hypertension"|ACAT=="Carotid or Aorto-femoral Vascular Disease") 

HIST$MHOCCUR[HIST$MHOCCUR==""]=NA 

HIST$MHOCCUR=droplevels(HIST$MHOCCUR) 

HIST<-reshape2::dcast(HIST,USUBJID~ACAT,value.var="MHOCCUR") #long to wide 

format 

 

 

 

MACE<-dplyr::select(gsk_116855_admace_v02,USUBJID,AVAL,PARAM) 

colnames(MACE)[colnames(MACE)=="AVAL"]<-"MACE_COUNT" 

MACE$PARAM<-as.character(MACE$PARAM) 

MACE<-

reshape2::dcast(MACE,USUBJID~PARAM,value.var="MACE_COUNT",fun.aggregate=su

m) 

colnames(MACE)[colnames(MACE)=="Adjudicated On-trt. CV deaths"]<-"CVDEATH" 

colnames(MACE)[colnames(MACE)=="Non-fatal On-trt. acute MI PT"]<-"AMIPT" 

colnames(MACE)[colnames(MACE)=="Non-fatal On-trt. CNS haem./CBV SMQ"]<-"CNS" 

colnames(MACE)[colnames(MACE)=="Non-fatal On-trt. heart disease SMQ"]<-

"HEARTDIS" 
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colnames(MACE)[colnames(MACE)=="Non-fatal On-trt. MI PT"]<-"MIPT" 

colnames(MACE)[colnames(MACE)=="Non-fatal On-trt. MI SMQ"]<-"MISMQ" 

MACE%<>%mutate(test=CVDEATH+AMIPT) 

MACE%<>%mutate(test1=test+CNS) 

MACE%<>%mutate(test2=test1+HEARTDIS) 

MACE%<>%mutate(test3=test2+MIPT) 

MACE%<>%mutate(TOTAL_MACE=test3+MISMQ) 

MACE$test<-MACE$test1<-MACE$test2<-MACE$test3<-NULL 

 

 

 

EVENTS<-

dplyr::select(gsk_116855_adadjud_v02,USUBJID,AVALC,APHASE,PARAM,ADY) 

EVENTS[1,] 

 

 

ADV<-dplyr::select(gsk_116855_adae_v02,USUBJID,AELLT,ASTDY) 

ADV%<>%filter(AELLT=="Upper gastrointestinal hemorrhage"|AELLT=="Gastrointestinal 

bleeding"|AELLT=="Duodenal ulcer"|AELLT=="Duodenal ulcer aggravated"| 

                AELLT=="Gastric ulcer"|AELLT=="Acute duodenal ulcer"| 

                         AELLT=="Lower gastrointestinal hemorrhage"|AELLT=="Bleeding gastric 

ulcer"|AELLT=="Peptic ulcer disease"| 

                AELLT=="Cerebral hemorrhage"|AELLT=="Perforated gastric ulcer"| 

                         AELLT=="Acute hemorrhage"|AELLT=="Intracranial 

hemorrhage"|AELLT=="Cerebral hemorrhage") 

 

colnames(ADV)[colnames(ADV)=="AELLT"]<-"ADVERSE_BLEED" 

colnames(ADV)[colnames(ADV)=="ASTDY"]<-"ADY_BLEED" 

ADV=ADV[order(ADV[,'USUBJID'],ADV[,'ADY_BLEED']),] 

ADV=ADV[!duplicated(ADV$USUBJID),] 

 

ADV%<>%mutate(BLEED_STATUS=ADY_BLEED) 

ADV$BLEED_STATUS[ADV$BLEED_STATUS>0]<-1 
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ADV$BLEED_STATUS[is.na(ADV$BLEED_STATUS)]<-0 

ADV$BLEED_STATUS[ADV$USUBJID=="6232"]<-NA 

ADV$ADY_BLEED[ADV$USUBJID=="6232"]<-NA 

ADV$BLEED_STATUS[ADV$USUBJID=="13142"]<-NA 

 

 

 

 

ADI<-dplyr::select(gsk_116855_adae_v02,USUBJID,AELLT,ASTDY) 

ADI%<>%filter(AELLT=="Influenza") 

colnames(ADI)[colnames(ADI)=="AELLT"]<-"INFLUENZA" 

colnames(ADI)[colnames(ADI)=="ASTDY"]<-"ADY_INFLUENZA" 

ADI=ADI[order(ADI[,'USUBJID'],ADI[,'ADY_INFLUENZA']),] 

ADI=ADI[!duplicated(ADI$USUBJID),] 

ADI%<>%mutate(INFLUENZA_STATUS=ADY_INFLUENZA) 

ADI$INFLUENZA_STATUS[ADI$INFLUENZA_STATUS>0]<-1 

ADI$INFLUENZA_STATUS[is.na(ADI$INFLUENZA_STATUS)]<-0 

 

 

 

 

 

 

FEV<-dplyr::select(gsk_116855_adpft_v02,USUBJID,ATPT,AVISIT,PARAM,AVAL) 

FEV[1,] 

FEV%<>%filter(PARAM=="Percent Predicted FEV1 (%)") 

FEV%<>%filter(ATPT=="Post-bronchodilator") 

FEV%<>%filter(AVISIT=="Screening") 

FEV$AVISIT<-FEV$ATPT<-FEV$PARAM<-NULL 

colnames(FEV)[colnames(FEV)=="AVAL"]<-"FEV1" 
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ADEXAC<-

dplyr::select(gsk_116855_adexac_v02,USUBJID,ADURN,ASEV,ASTDT,ASTDY,APHAS

E) 

ADEXAC[1,] 

colnames(ADEXAC)[colnames(ADEXAC)=="ASEV"]<-"SEVERITY" 

ADEXAC%<>%filter(APHASE=="On-treatment") 

ADEXAC%<>%distinct(USUBJID,ASTDY,.keep_all=TRUE) 

ADEXAC$ADURN<-ADEXAC$ASTDT<-ADEXAC$ASTDY<-ADEXAC$APHASE<-

NULL 

ADEXAC$VALUE<-1 

ADEXAC<-

reshape2::dcast(ADEXAC,USUBJID~SEVERITY,value.var="VALUE",fun.aggregate=sum) 

ADEXAC%<>%mutate(TOTAL_EXAC=Moderate+Severe) 

 

 

 

 

 

 

ADEXACA<-dplyr::select(gsk_116855_adexaca_v02,USUBJID,AVAL,PARAM) 

ADEXACA[1,] 

ADEXACA%<>%filter(PARAM=="Number of On-trt. Moderate 

Exac."|PARAM=="Number of On-trt. Severe Exac."| 

                   PARAM=="Number of On-trt. Mod/Sev Exac."|PARAM=="Rate of On-trt. 

Mod/Sev Exac.") 

ADEXACA$PARAM=droplevels(ADEXACA$PARAM) 

ADEXACA$AVAL<-as.integer(ADEXACA$AVAL) 

ADEXACA<-reshape2::dcast(ADEXACA,USUBJID~PARAM,value.var="AVAL") # long 

to wide 
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EVENTS2<-dplyr::select(gsk_116855_adtte_v02,USUBJID,AVAL,CNSR,PARAM) 

EVENTS2[1,] 

EVENTS2%<>%filter(PARAM=="On-trt All Cause Mortality (days)") 

colnames(EVENTS2)[colnames(EVENTS2)=="AVAL"]<-"TIME_ACM" 

colnames(EVENTS2)[colnames(EVENTS2)=="CNSR"]<-"CNSR_ACM" 

EVENTS2$PARAM<-NULL 

EVENTS2%<>%distinct(USUBJID,TIME_ACM,.keep_all=TRUE) 

 

EVENTS3<-dplyr::select(gsk_116855_adtte_v02,USUBJID,AVAL,CNSR,PARAM) 

EVENTS3[1,] 

EVENTS3%<>%filter(PARAM=="On-trt Cardiovascular AESI (days)") 

colnames(EVENTS3)[colnames(EVENTS3)=="AVAL"]<-"TIME_CVCOMP" 

colnames(EVENTS3)[colnames(EVENTS3)=="CNSR"]<-"CNSR_CVCOMP" 

EVENTS3$PARAM<-NULL 

EVENTS3%<>%distinct(USUBJID,TIME_CVCOMP,.keep_all=TRUE) 

 

EVENTS4<-dplyr::select(gsk_116855_adtte_v02,USUBJID,AVAL,CNSR,PARAM) 

EVENTS4[1,] 

EVENTS4%<>%filter(PARAM=="On-trt Moderate/Severe Exac. (days)") 

colnames(EVENTS4)[colnames(EVENTS4)=="AVAL"]<-"TIME_EXAC_TOTAL" 

colnames(EVENTS4)[colnames(EVENTS4)=="CNSR"]<-"CNSR_EXAC_TOTAL" 

EVENTS4$PARAM<-NULL 

EVENTS4%<>%distinct(USUBJID,TIME_EXAC_TOTAL,.keep_all=TRUE) 

 

EVENTS5<-dplyr::select(gsk_116855_adtte_v02,USUBJID,AVAL,CNSR,PARAM) 

EVENTS5[1,] 

EVENTS5%<>%filter(PARAM=="On-trt Moderate Exac. (days)") 

colnames(EVENTS5)[colnames(EVENTS5)=="AVAL"]<-"TIME_EXAC_MOD" 

colnames(EVENTS5)[colnames(EVENTS5)=="CNSR"]<-"CNSR_EXAC_MOD" 

EVENTS5$PARAM<-NULL 
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EVENTS5%<>%distinct(USUBJID,TIME_EXAC_MOD,.keep_all=TRUE) 

 

 

 

EVENTS6<-dplyr::select(gsk_116855_adtte_v02,USUBJID,AVAL,CNSR,PARAM) 

EVENTS6[1,] 

EVENTS6%<>%filter(PARAM=="On-trt Severe Exac. (days)") 

colnames(EVENTS6)[colnames(EVENTS6)=="AVAL"]<-"TIME_EXAC_SEV" 

colnames(EVENTS6)[colnames(EVENTS6)=="CNSR"]<-"CNSR_EXAC_SEV" 

EVENTS6$PARAM<-NULL 

EVENTS6%<>%distinct(USUBJID,TIME_EXAC_SEV,.keep_all=TRUE) 

 

 

SMOKE<-dplyr::select(gsk_116855_adsu_v02,USUBJID,AVAL,PARAM) 

SMOKE[1,] 

SMOKE%<>%filter(PARAM=="Number of pack years") 

colnames(SMOKE)[colnames(SMOKE)=="AVAL"]<-"PACK_YRS" 

SMOKE%<>%distinct(USUBJID,PACK_YRS,.keep_all=TRUE) 

SMOKE$PARAM<-NULL 

 

 

 

MEDS<-dplyr::select(gsk_116855_adcm_v02,USUBJID,CMBASE,DCL2T) 

MEDS[1,] 

MEDS%<>%filter(DCL2T=="DRUGS USED IN DIABETES") 

MEDS%<>%distinct(USUBJID,CMBASE,.keep_all=TRUE) 

MEDS$CMBASE=droplevels(MEDS$CMBASE) 

MEDS%<>%mutate(CLASS=case_when(CMBASE=="ACARBOSE"~"GLUCOSIDASE_I

NHIB", 

                                       CMBASE=="MIGLITOL"~"GLUCOSIDASE_INHIB", 

                                       CMBASE=="VOGLIBOSE"~"GLUCOSIDASE_INHIB", 

                                       CMBASE=="INSULIN ASPART"~"INSULINS", 
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                                       CMBASE=="INSULIN ASPART PROTAMINE"~"INSULINS", 

                                       CMBASE=="INSULIN DETEMIR"~"INSULINS", 

                                       CMBASE=="INSULIN GLARGINE"~"INSULINS", 

                                       CMBASE=="INSULIN GLULISINE"~"INSULINS", 

                                       CMBASE=="INSULIN HUMAN"~"INSULINS", 

                                       CMBASE=="INSULIN HUMAN 

SEMISYNTHETIC"~"INSULINS", 

                                       CMBASE=="INSULIN INJECTION, BIPHASIC 

ISOPHANE"~"INSULINS", 

                                       CMBASE=="INSULIN ISOPHANE, HUMAN 

BIOSYNTHETIC"~"INSULINS", 

                                       CMBASE=="INSULIN LISPRO"~"INSULINS", 

                                       CMBASE=="INSULIN LISPRO PROTAMINE"~"INSULINS", 

                                       CMBASE=="INSULIN NOS"~"INSULINS", 

                                       CMBASE=="INSULIN PORCINE"~"INSULINS", 

                                       CMBASE=="INSULIN, HUMAN BIOSYNTHETIC"~"INSULINS", 

                               CMBASE=="INSULIN DEGLUDEC"~"INSULINS", 

                               CMBASE=="HUMAN BIOSYNTHETIC INSULIN"~"INSULINS", 

                                       CMBASE=="ISOPHANE INSULIN"~"INSULINS", 

                                       CMBASE=="BUFORMIN"~"BIGUANIDES", 

                                       CMBASE=="METFORMIN"~"BIGUANIDES", 

                                       CMBASE=="PHENFORMIN"~"BIGUANIDES", 

                                       CMBASE=="GLUCOMET (NOS)"~"BIGUANIDES", 

                                       CMBASE=="GLUCONORM 

(NOS)"~"SULFONYLUREAS_BIGUANIDES", 

                                       CMBASE=="GLUCORED 

NOS"~"SULFONYLUREAS_BIGUANIDES", 

                                       CMBASE=="ZOMARIST (NOS)"~"DPP4_BIGUANIDES", 

                                       

CMBASE=="GLUCONORM"~"SULFONYLUREAS_BIGUANIDES", 

                                       CMBASE=="ALOGLIPTIN"~"DPP4", 

                                       CMBASE=="GALVUS (NOS)"~"DPP4", 

                                       CMBASE=="GEMIGLIPTIN"~"DPP4", 

                                       CMBASE=="LINAGLIPTIN"~"DPP4", 
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                                       CMBASE=="SAXAGLIPTIN"~"DPP4", 

                                       CMBASE=="SITAGLIPTIN"~"DPP4", 

                                       CMBASE=="VILDAGLIPTIN"~"DPP4", 

                               CMBASE=="TENELIGLIPTIN"~"DPP4", 

                                       CMBASE=="EXENATIDE"~"GLPR_AGONIST", 

                               CMBASE=="DULAGLUTIDE"~"GLPR_AGONIST", 

                                       CMBASE=="LIRAGLUTIDE"~"GLPR_AGONIST", 

                                       CMBASE=="LIXISENATIDE"~"GLPR_AGONIST", 

                                       CMBASE=="CHLORPROPAMIDE"~"SULFONYLUREAS", 

                                       CMBASE=="DIABETA (NOS)"~"SULFONYLUREAS", 

                                       CMBASE=="GLIBENCLAMIDE"~"SULFONYLUREAS", 

                                       CMBASE=="GLIBETIC (NOS)"~"SULFONYLUREAS", 

                                       CMBASE=="GLICLAZIDE"~"SULFONYLUREAS", 

                                       CMBASE=="GLIM (NOS)"~"SULFONYLUREAS", 

                                       CMBASE=="GLIMEL (NOS)"~"SULFONYLUREAS", 

                                       CMBASE=="GLIMEPIRIDE"~"SULFONYLUREAS", 

                                       CMBASE=="GLIPID NOS"~"SULFONYLUREAS", 

                                       CMBASE=="GLIPIZIDE"~"SULFONYLUREAS", 

                                       CMBASE=="GLIQUIDONE"~"SULFONYLUREAS", 

                                       CMBASE=="GLYCRON (NOS)"~"SULFONYLUREAS", 

                                       CMBASE=="TOLBUTAMIDE"~"SULFONYLUREAS", 

                                       

CMBASE=="CANAGLIFLOZIN"~"SODIUM_TRANSPORT_INHIB", 

                               CMBASE=="IPRAGLIFLOZIN"~"SODIUM_TRANSPORT_INHIB", 

                               CMBASE=="EMPAGLIFLOZIN"~"SODIUM_TRANSPORT_INHIB", 

                                       

CMBASE=="DAPAGLIFLOZIN"~"SODIUM_TRANSPORT_INHIB", 

                                       CMBASE=="MITIGLINIDE"~"MEGLITINIDES", 

                                       CMBASE=="NATEGLINIDE"~"MEGLITINIDES", 

                                       CMBASE=="REPAGLINIDE"~"MEGLITINIDES", 

                                       CMBASE=="LOBEGLITAZONE"~"THIAZOLIDINEDIONE", 

                                       CMBASE=="PIOGLITAZONE"~"THIAZOLIDINEDIONE", 

                                       CMBASE=="ROSIGLITAZONE"~"THIAZOLIDINEDIONE", 



210 

 

                                       CMBASE=="THIAZOLIDINEDIONE 

(NOS)"~"THIAZOLIDINEDIONE", 

                                       CMBASE=="CINNAMOMUM VERUM  EXTRACT"~"OTHER", 

                               CMBASE=="CINNAMOMUM CASSIA"~"OTHER", 

                                       CMBASE=="COLESEVELAM"~"OTHER", 

                                       CMBASE=="DIABETOL (NOS)"~"OTHER", 

                               CMBASE=="MOMORDICA CHARANTIA"~"OTHER", 

                               CMBASE=="DIABETA (NOS)"~"OTHER", 

                               CMBASE=="DIABESIN (NOS)"~"OTHER", 

                                       CMBASE=="EPALRESTAT"~"OTHER", 

                                       CMBASE=="ORAL HYPOGLYCEMICS NOS"~"OTHER", 

                                       CMBASE=="PRAMLINTIDE"~"OTHER", 

                                       CMBASE=="THIOCTIC 

ACID"~"OTHER",TRUE~NA_character_)) 

 

MEDS[1,] 

MEDS$DCL2T<-MEDS$CMBASE<-NULL 

MEDS%<>%distinct(USUBJID,CLASS,.keep_all=TRUE) 

MEDS$VALUE<-1 

MEDS<-reshape2::dcast(MEDS,USUBJID~CLASS,value.var="VALUE") 

MEDS[is.na(MEDS)]<-0 

 

 

 

MEDS2<-dplyr::select(gsk_116855_adcm_v02,USUBJID,DCL4T) 

MEDS2[1,] 

MEDS2%<>%filter(DCL4T=="ALPHA AND BETA BLOCKING 

AGENTS"|DCL4T=="FIBRATES"|DCL4T=="ACE INHIBITORS, 

PLAIN"|DCL4T=="HMG COA REDUCTASE INHIBITORS"| 

                  DCL4T=="THIAZIDES, PLAIN"|DCL4T=="ANGIOTENSIN II 

ANTAGONISTS, PLAIN"|DCL4T=="BETA BLOCKING AGENTS, 

SELECTIVE"|DCL4T=="BETA BLOCKING AGENTS, NON-

SELECTIVE"|DCL4T=="ANTIARRHYTHMICS, CLASS III") 

MEDS2%<>%distinct(USUBJID,DCL4T,.keep_all=TRUE) 
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MEDS2$DCL4T=droplevels(MEDS2$DCL4T) 

MEDS2$VALUE<-1 

MEDS2<-reshape2::dcast(MEDS2,USUBJID~DCL4T,value.var="VALUE") 

MEDS2[is.na(MEDS2)]<-0 

 

MEDS3<-dplyr::select(gsk_116855_adcm_v02,USUBJID,ADECOD,DCL4T) 

MEDS3%<>%filter(DCL4T=="PLATELET AGGREGATION INHIBITORS EXCL. 

HEPARIN") 

MEDS3%<>%distinct(USUBJID,ADECOD,.keep_all=TRUE) 

 

MEDS3%<>%mutate(ANTIPLATE=case_when(ADECOD=="ACETYLSALICYLIC 

ACID"~"ASPIRIN", 

                               ADECOD=="ACETYLSALICYLATE LYSINE"~"ASPIRIN", 

                               ADECOD=="ACETYLSALICYLIC ACID + ALUMINIUM 

GLYCINATE + MAGNESIUM CARBONATE"~"ASPIRIN", 

                               ADECOD=="ACETYLSALICYLIC ACID + 

LANSOPRAZOLE"~"ASPIRIN", 

                               ADECOD=="ACETYLSALICYLATE CALCIUM"~"ASPIRIN", 

                               ADECOD=="ACETYLSALICYLIC ACID + MAGNESIUM 

HYDROXIDE"~"ASPIRIN",ADECOD=="CLOPIDOGREL"~"CLOPIDOGREL", 

                               ADECOD=="CLOPIDOGREL 

BISULFATE"~"CLOPIDOGREL",ADECOD=="CARBASALATE 

CALCIUM"~"CARBASALATE", 

                               

ADECOD=="FONDAPARINUX"~"FONDAPARINUX",ADECOD=="TICAGRELOR"~"T

ICAGRELOR", 

                               

ADECOD=="CILOSTAZOL"~"CILOSTAZOL",ADECOD=="DIPYRIDAMOLE"~"DIPY

RIDAMOLE", 

                               ADECOD=="LIMAPROST ALFADEX"~"LIMAPROST 

ALFADEX",ADECOD=="BERAPROST SODIUM"~"BERAPROST SODIUM", 

                               ADECOD=="SARPOGRELATE 

HYDROCHLORIDE"~"SARPOGRELATE HYDROCHLORIDE", 

                               ADECOD=="ETHYL ICOSAPENTATE"~"ETHYL 

ICOSAPENTATE",ADECOD=="ICOSAPENT"~"ICOSAPENT", 

                               

ADECOD=="CARBASALATE"~"CARBASALATE",ADECOD=="RESVERATROL"~"R

ESVERATROL", 
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                               ADECOD=="OZAGREL SODIUM"~"OZAGREL 

SODIUM",ADECOD=="FONDAPARINUX SODIUM"~"FONDAPARINUX", 

                               

ADECOD=="TRIFLUSAL"~"TRIFLUSAL",ADECOD=="VORAPAXAR 

SULFATE"~"VORAPAXAR SULFATE", 

                               ADECOD=="TICLOPIDINE HYDROCHLORIDE"~"TICLOPIDINE 

HYDROCHLORIDE", 

                               

ADECOD=="PRASUGREL"~"PRASUGREL",ADECOD=="CILOSTAZOL + GINKGO 

BILOBA EXTRACT"~"CILOSTAZOL + GINKGO BILOBA EXTRACT", 

                               ADECOD=="ACETYLSALICYLIC ACID + 

DIPYRIDAMOLE"~"ACETYLSALICYLIC ACID + DIPYRIDAMOLE", 

                               ADECOD=="CLOPIDOGREL 

BESYLATE"~"CLOPIDOGREL",ADECOD=="ACETYLSALICYLIC ACID + 

CLOPIDOGREL"~"ACETYLSALICYLIC ACID + CLOPIDOGREL", 

                               ADECOD=="ACETYLSALICYLIC ACID + CLOPIDOGREL 

BISULFATE"~"ACETYLSALICYLIC ACID + CLOPIDOGREL", 

                               

ADECOD=="EPTIFIBATIDE"~"EPTIFIBATIDE",ADECOD=="MESOGLYCAN"~"MES

OGLYCAN",ADECOD=="ANAGRELIDE"~"ANAGRELIDE", 

                               ADECOD=="GINKGO BILOBA EXTRACT + TICLOPIDINE 

HYDROCHLORIDE"~"GINKGO BILOBA EXTRACT + TICLOPIDINE 

HYDROCHLORIDE",TRUE~NA_character_)) 

 

MEDS3$DCL4T<-MEDS3$ADECOD<-NULL 

MEDS3$VALUE<-1 

MEDS3%<>%distinct(USUBJID,ANTIPLATE,.keep_all=TRUE) 

MEDS3<-reshape2::dcast(MEDS3,USUBJID~ANTIPLATE,value.var="VALUE") 

MEDS3[is.na(MEDS3)]<-0 

 

 

 

MEDS2<-merge(MEDS2,MEDS3,by="USUBJID",all.x=TRUE,all.y=TRUE) 

MEDS2[is.na(MEDS2)]<-0 

 

 

#MERGING 
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U<-merge(SLA,LAB,by="USUBJID",all.x=TRUE,all.y=TRUE) 

V<-merge(U,HIST,by="USUBJID",all.x=TRUE,all.y=TRUE) 

X<-merge(V,FEV,by="USUBJID",all.x=TRUE,all.y=TRUE) 

Y<-merge(X,ADEXACA,by="USUBJID",all.x=TRUE,all.y=TRUE) 

Z<-merge(Y,EVENTS2,by="USUBJID",all.x=TRUE,all.y=TRUE) 

Z1<-merge(Z,EVENTS3,by="USUBJID",all.x=TRUE,all.y=TRUE) 

Z2<-merge(Z1,EVENTS4,by="USUBJID",all.x=TRUE,all.y=TRUE) 

Z3<-merge(Z2,EVENTS5,by="USUBJID",all.x=TRUE,all.y=TRUE) 

Z4<-merge(Z3,EVENTS6,by="USUBJID",all.x=TRUE,all.y=TRUE) 

Z5<-merge(Z4,SMOKE,by="USUBJID",all.x=TRUE,all.y=TRUE) 

Z6<-merge(Z5,MEDS,by="USUBJID",all.x=TRUE,all.y=TRUE) 

Z7<-merge(Z6,MEDS2,by="USUBJID",all.x=TRUE,all.y=TRUE) 

Z7<-merge(Z7,ADV,by="USUBJID",all.x=TRUE,all.y=TRUE) 

Z7<-merge(Z7,ADI,by="USUBJID",all.x=TRUE,all.y=TRUE) 

Z7<-merge(Z7,MACE,by="USUBJID",all.x=TRUE,all.y=TRUE) 

 

 

colnames(Z7)[colnames(Z7)=="ALPHA AND BETA BLOCKING AGENTS"]<-

"ALPHABETABLOCK" 

colnames(Z7)[colnames(Z7)=="ACE INHIBITORS, PLAIN"]<-"ACEI" 

colnames(Z7)[colnames(Z7)=="ANGIOTENSIN II ANTAGONISTS, PLAIN"]<-"ARB" 

colnames(Z7)[colnames(Z7)=="HMG COA REDUCTASE INHIBITORS"]<-"STATINS" 

colnames(Z7)[colnames(Z7)=="ANTIARRHYTHMICS, CLASS III"]<-"CLASS3" 

colnames(Z7)[colnames(Z7)=="THIAZIDES, PLAIN"]<-"THIAZ" 

colnames(Z7)[colnames(Z7)=="BETA BLOCKING AGENTS, NON-SELECTIVE"]<-

"NON_SELEC_B_BLOCK" 

colnames(Z7)[colnames(Z7)=="BETA BLOCKING AGENTS, SELECTIVE"]<-

"SELEC_B_BLOCK" 

colnames(Z7)[colnames(Z7)=="Number of On-trt. Severe Exac."]<-"SEVEXAC" 

colnames(Z7)[colnames(Z7)=="Number of On-trt. Moderate Exac."]<-"MODEXAC" 

colnames(Z7)[colnames(Z7)=="Number of On-trt. Mod/Sev Exac."]<-"MODSEVEXAC" 

colnames(Z7)[colnames(Z7)=="AAGE"]<-"AGE" 
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colnames(Z7)[colnames(Z7)=="Myocardial Infarction"]<-"PREV_MI" 

colnames(Z7)[colnames(Z7)=="Cerebrovascular Accident"]<-"PREV_STROKE" 

colnames(Z7)[colnames(Z7)=="Congestive Heart Failure"]<-"PREV_HF" 

colnames(Z7)[colnames(Z7)=="Coronary Artery Disease"]<-"PREV_CAD" 

colnames(Z7)[colnames(Z7)=="Diabetes Mellitus"]<-"PREV_DIABETES" 

colnames(Z7)[colnames(Z7)=="Hypercholesterolemia"]<-"PREV_HYPERCHOL" 

colnames(Z7)[colnames(Z7)=="Hypertension"]<-"PREV_HYPERTENS" 

colnames(Z7)[colnames(Z7)=="Arrhythmia"]<-"PREV_ARR" 

colnames(Z7)[colnames(Z7)=="Angina Pectoris"]<-"PREV_ANG" 

colnames(Z7)[colnames(Z7)=="PNEUMONIA"]<-"PREV_PNEU" 

colnames(Z7)[colnames(Z7)=="Carotid or Aorto-femoral Vascular Disease"]<-"PREV_PAD" 

 

 

Z7$PREV_PNEU<-as.factor(Z7$PREV_PNEU) 

Z7$SMKBLN<-as.factor(Z7$SMKBLN) 

Z7$PREV_ANG<-as.factor(Z7$PREV_ANG) 

Z7$PREV_ARR<-as.factor(Z7$PREV_ARR) 

Z7$PREV_STROKE<-as.factor(Z7$PREV_STROKE) 

Z7$PREV_PAD<-as.factor(Z7$PREV_PAD) 

Z7$PREV_HF<-as.factor(Z7$PREV_HF) 

Z7$PREV_CAD<-as.factor(Z7$PREV_CAD) 

Z7$PREV_DIABETES<-as.factor(Z7$PREV_DIABETES) 

Z7$PREV_HYPERCHOL<-as.factor(Z7$PREV_HYPERCHOL) 

Z7$PREV_HYPERTENS<-as.factor(Z7$PREV_HYPERTENS) 

Z7$PREV_MI<-as.factor(Z7$PREV_MI) 

Z7$CNSR_ACM<-as.factor(Z7$CNSR_ACM) 

Z7$CNSR_CVCOMP<-as.factor(Z7$CNSR_CVCOMP) 

Z7$CNSR_EXAC_TOTAL<-as.factor(Z7$CNSR_EXAC_TOTAL) 

Z7$CNSR_EXAC_MOD<-as.factor(Z7$CNSR_EXAC_MOD) 

Z7$CNSR_EXAC_SEV<-as.factor(Z7$CNSR_EXAC_SEV) 

Z7$BIGUANIDES<-as.factor(Z7$BIGUANIDES) 

Z7$DPP4<-as.factor(Z7$DPP4) 
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Z7$DPP4_BIGUANIDES<-as.factor(Z7$DPP4_BIGUANIDES) 

Z7$GLPR_AGONIST<-as.factor(Z7$GLPR_AGONIST) 

Z7$GLUCOSIDASE_INHIB<-as.factor(Z7$GLUCOSIDASE_INHIB) 

Z7$INSULINS<-as.factor(Z7$INSULINS) 

Z7$MEGLITINIDES<-as.factor(Z7$MEGLITINIDES) 

Z7$OTHER<-as.factor(Z7$OTHER) 

Z7$SODIUM_TRANSPORT_INHIB<-as.factor(Z7$SODIUM_TRANSPORT_INHIB) 

Z7$SULFONYLUREAS<-as.factor(Z7$SULFONYLUREAS) 

Z7$THIAZOLIDINEDIONE<-as.factor(Z7$THIAZOLIDINEDIONE) 

Z7$ACEI<-as.factor(Z7$ACEI) 

Z7$ALPHABETABLOCK<-as.factor(Z7$ALPHABETABLOCK) 

Z7$ARB<-as.factor(Z7$ARB) 

Z7$CLASS3<-as.factor(Z7$CLASS3) 

Z7$NON_SELEC_B_BLOCK<-as.factor(Z7$NON_SELEC_B_BLOCK) 

Z7$SELEC_B_BLOCK<-as.factor(Z7$SELEC_B_BLOCK) 

Z7$FIBRATES<-as.factor(Z7$FIBRATES) 

Z7$STATINS<-as.factor(Z7$STATINS) 

Z7$THIAZ<-as.factor(Z7$THIAZ) 

Z7$ASPIRIN<-as.factor(Z7$ASPIRIN) 

Z7$CLOPIDOGREL<-as.factor(Z7$CLOPIDOGREL) 

 

Z7$ARMCD[Z7$ARMCD==""]=NA 

Z7$ARMCD=droplevels(Z7$ARMCD) 

Z7%<>%filter(ARMCD=="FFVI"|ARMCD=="UMECVI"|ARMCD=="FFUMECVI") 

Z7$ARMCD=droplevels(Z7$ARMCD) 

Z7$SEX[Z7$SEX==""]=NA 

Z7$SEX=droplevels(Z7$SEX) 

 

Z7$RACE[Z7$RACE==""]=NA 

Z7%<>%mutate(RACE_CODE=case_when(RACE=="AMERICAN INDIAN OR ALASKA 

NATIVE"~"OTHER", 

                                  RACE=="ASIAN"~"ASIAN", 
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                                  RACE=="BLACK OR AFRICAN AMERICAN"~"OTHER", 

                                  RACE=="MULTIPLE"~"OTHER", 

                                  RACE=="NATIVE HAWAIIAN OR OTHER PACIFIC 

ISLANDER"~"OTHER", 

                                  RACE=="WHITE"~"WHITE",TRUE~NA_character_)) 

 

 

 

Z7$ANG_CAD<-paste(Z7$PREV_ANG,Z7$PREV_CAD) 

Z7$IHD_CAD<-paste(Z7$ANG_CAD,Z7$PREV_MI) 

Z7%<>%mutate(IHDCAD=case_when(IHD_CAD=="N N N"~"N",IHD_CAD=="N N 

NA"~"N", 

                              IHD_CAD=="N N Y"~"Y",IHD_CAD=="N NA N"~"N",IHD_CAD=="N 

Y N"~"Y", 

                              IHD_CAD=="N Y Y"~"Y",IHD_CAD=="NA N 

N"~"N",IHD_CAD=="NA NA N"~"N",IHD_CAD=="NA NA NA"~"NA", 

                              IHD_CAD=="NA NA Y"~"Y",IHD_CAD=="Y N 

N"~"Y",IHD_CAD=="Y N NA"~"Y",IHD_CAD=="Y N Y"~"Y", 

                              IHD_CAD=="Y NA N"~"Y",IHD_CAD=="Y Y N"~"Y",IHD_CAD=="Y 

Y Y"~"Y",TRUE~NA_character_)) 

 

Z7$IHDCAD[Z7$IHDCAD=="NA"]<-NA 

Z7$IHDCAD<-as.factor(Z7$IHDCAD) 

Z7$ANG_CAD<-Z7$IHD_CAD<-NULL 

 

Z7$BIGUANIDES[is.na(Z7$BIGUANIDES)]<-0 

Z7$DPP4[is.na(Z7$DPP4)]<-0 

Z7$DPP4_BIGUANIDES[is.na(Z7$DPP4_BIGUANIDES)]<-0 

Z7$GLPR_AGONIST[is.na(Z7$GLPR_AGONIST)]<-0 

Z7$GLUCOSIDASE_INHIB[is.na(Z7$GLUCOSIDASE_INHIB)]<-0 

Z7$INSULINS[is.na(Z7$INSULINS)]<-0 

Z7$MEGLITINIDES[is.na(Z7$MEGLITINIDES)]<-0 

Z7$OTHER[is.na(Z7$OTHER)]<-0 

Z7$SODIUM_TRANSPORT_INHIB[is.na(Z7$SODIUM_TRANSPORT_INHIB)]<-0 
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Z7$SULFONYLUREAS[is.na(Z7$SULFONYLUREAS)]<-0 

Z7$THIAZOLIDINEDIONE[is.na(Z7$THIAZOLIDINEDIONE)]<-0 

Z7$ACEI[is.na(Z7$ACEI)]<-0 

Z7$ALPHABETABLOCK[is.na(Z7$ALPHABETABLOCK)]<-0 

Z7$ARB[is.na(Z7$ARB)]<-0 

Z7$CLASS3[is.na(Z7$CLASS3)]<-0 

Z7$NON_SELEC_B_BLOCK[is.na(Z7$NON_SELEC_B_BLOCK)]<-0 

Z7$SELEC_B_BLOCK[is.na(Z7$SELEC_B_BLOCK)]<-0 

Z7$FIBRATES[is.na(Z7$FIBRATES)]<-0 

Z7$STATINS[is.na(Z7$STATINS)]<-0 

Z7$THIAZ[is.na(Z7$THIAZ)]<-0 

colnames(Z7)[colnames(Z7)=="ACETYLSALICYLIC ACID + CLOPIDOGREL"]<-

"ASPCLOP" 

Z7$ASPCLOP[is.na(Z7$ASPCLOP)]<-0 

colnames(Z7)[colnames(Z7)=="ACETYLSALICYLIC ACID + DIPYRIDAMOLE"]<-

"ASPDIP" 

Z7$ASPDIP[is.na(Z7$ASPDIP)]<-0 

Z7$ANAGRELIDE[is.na(Z7$ANAGRELIDE)]<-0 

Z7$ASPIRIN[is.na(Z7$ASPIRIN)]<-0 

colnames(Z7)[colnames(Z7)=="BERAPROST SODIUM"]<-"BERA" 

Z7$BERA[is.na(Z7$BERA)]<-0 

Z7$CARBASALATE[is.na(Z7$CARBASALATE)]<-0 

Z7$CILOSTAZOL[is.na(Z7$CILOSTAZOL)]<-0 

colnames(Z7)[colnames(Z7)=="CILOSTAZOL + GINKGO BILOBA EXTRACT"]<-

"CILOGIN" 

Z7$CILOGIN[is.na(Z7$CILOGIN)]<-0 

Z7$CLOPIDOGREL[is.na(Z7$CLOPIDOGREL)]<-0 

Z7$DIPYRIDAMOLE[is.na(Z7$DIPYRIDAMOLE)]<-0 

Z7$EPTIFIBATIDE[is.na(Z7$EPTIFIBATIDE)]<-0 

colnames(Z7)[colnames(Z7)=="ETHYL ICOSAPENTATE"]<-"ETHICO" 

Z7$ETHICO[is.na(Z7$ETHICO)]<-0 

Z7$FONDAPARINUX[is.na(Z7$FONDAPARINUX)]<-0 
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colnames(Z7)[colnames(Z7)=="GINKGO BILOBA EXTRACT + TICLOPIDINE 

HYDROCHLORIDE"]<-"GINTIC" 

Z7$GINTIC[is.na(Z7$GINTIC)]<-0 

Z7$ICOSAPENT[is.na(Z7$ICOSAPENT)]<-0 

colnames(Z7)[colnames(Z7)=="LIMAPROST ALFADEX"]<-"LIM" 

Z7$LIM[is.na(Z7$LIM)]<-0 

Z7$MESOGLYCAN[is.na(Z7$MESOGLYCAN)]<-0 

colnames(Z7)[colnames(Z7)=="OZAGREL SODIUM"]<-"OZ" 

Z7$OZ[is.na(Z7$OZ)]<-0 

Z7$PRASUGREL[is.na(Z7$PRASUGREL)]<-0 

Z7$RESVERATROL[is.na(Z7$RESVERATROL)]<-0 

colnames(Z7)[colnames(Z7)=="SARPOGRELATE HYDROCHLORIDE"]<-"SARP" 

Z7$SARP[is.na(Z7$SARP)]<-0 

Z7$TICAGRELOR[is.na(Z7$TICAGRELOR)]<-0 

colnames(Z7)[colnames(Z7)=="TICLOPIDINE HYDROCHLORIDE"]<-"TIC" 

Z7$TIC[is.na(Z7$TIC)]<-0 

Z7$TRIFLUSAL[is.na(Z7$TRIFLUSAL)]<-0 

colnames(Z7)[colnames(Z7)=="VORAPAXAR SULFATE"]<-"VOR" 

Z7$VOR[is.na(Z7$VOR)]<-0 

 

Z7%<>%mutate(os.days=Z7$os_yrs*365.25) 

Z7$os.days<-as.integer(Z7$os.days) 

Z7%<>%mutate(ADY_BLEED_FULL=case_when(os.days>ADY_BLEED~ADY_BLEED,

TRUE~os.days)) 

Z7$BLEED_STATUS[is.na(Z7$BLEED_STATUS)]<-0 

Z7%<>%mutate(ADY_INFLUENZA_FULL=case_when(os.days>ADY_INFLUENZA~AD

Y_INFLUENZA,TRUE~os.days)) 

Z7$INFLUENZA_STATUS[is.na(Z7$INFLUENZA_STATUS)]<-0 

 

 

 

Z7$ADY_BLEED_FULL[Z7$USUBJID=="13142"]<-NA 

Z7$ADY_BLEED_FULL[Z7$USUBJID=="6232"]<-NA 
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Z7%<>%mutate(CNSR_ACM=case_when(CNSR_ACM=="0"~1,CNSR_ACM=="1"~0,TR

UE~NA_real_)) 

Z7%<>%mutate(CNSR_CVCOMP=case_when(CNSR_CVCOMP=="0"~1,CNSR_CVCOM

P=="1"~0,TRUE~NA_real_)) 

Z7%<>%mutate(CNSR_EXAC_TOTAL=case_when(CNSR_EXAC_TOTAL=="0"~1,CNS

R_EXAC_TOTAL=="1"~0,TRUE~NA_real_)) 

Z7%<>%mutate(CNSR_EXAC_MOD=case_when(CNSR_EXAC_MOD=="0"~1,CNSR_E

XAC_MOD=="1"~0,TRUE~NA_real_)) 

Z7%<>%mutate(CNSR_EXAC_SEV=case_when(CNSR_EXAC_SEV=="0"~1,CNSR_EXA

C_SEV=="1"~0,TRUE~NA_real_)) 

 

Z7$CNSR_ACM<-as.factor(Z7$CNSR_ACM) 

Z7$CNSR_CVCOMP<-as.factor(Z7$CNSR_CVCOMP) 

Z7$CNSR_EXAC_TOTAL<-as.factor(Z7$CNSR_EXAC_TOTAL) 

Z7$CNSR_EXAC_MOD<-as.factor(Z7$CNSR_EXAC_MOD) 

Z7$CNSR_EXAC_SEV<-as.factor(Z7$CNSR_EXAC_SEV) 

 

Z7$TOTAL_MACE<-as.character(Z7$TOTAL_MACE) 

 

IMPACT<-

tableby(~AGE+SEX+ARMCD+BMI+SMKBLN+PACK_YRS+RACE_CODE+PREV_EXA

C+ 

                        PREV_PNEU+TREATMENT_YEARS+GLUCOSE+PREV_ARR+ 

                        

PREV_STROKE+PREV_HF+PREV_PAD+PREV_DIABETES+PREV_HYPERCHOL+ 

                        PREV_HYPERTENS+FEV1+MODSEVEXAC+MODEXAC+SEVEXAC+ 

                        

CNSR_ACM+CNSR_CVCOMP+CNSR_EXAC_TOTAL+CNSR_EXAC_MOD+ 

                        

CNSR_EXAC_SEV+ACEI+ARB+NON_SELEC_B_BLOCK+SELEC_B_BLOCK+ 

                        

STATINS+ASPIRIN+CLOPIDOGREL+PREV_MI+PREV_CAD+PREV_ANG+IHDCAD+ 

                  TOTAL_MACE,data=subset(Z7,INTENTION_TO_TREAT=="Y"))  
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summary(IMPACT,title="IMPACT") 

Z7$TOTAL_MACE<-as.numeric(Z7$TOTAL_MACE) 

 

Z7$SMKBLN<-relevel(Z7$SMKBLN,ref="2") 

Z7$PREV_PNEU<-relevel(Z7$PREV_PNEU,ref="2") 

Z7$PREV_EXAC<-as.factor(Z7$PREV_EXAC) 

Z7$PREV_EXAC<-relevel(Z7$PREV_EXAC,ref="0") 

Z7$IHDCAD<-relevel(Z7$IHDCAD,ref="N") 

 

 

Z7$CNSR_ACM<-as.numeric(Z7$CNSR_ACM) 

Z7%<>%mutate(CNSR_ACM=case_when(CNSR_ACM=="1"~0,CNSR_ACM=="2"~1,TR

UE~NA_real_)) 

 

Z7$CNSR_CVCOMP<-as.numeric(Z7$CNSR_CVCOMP) 

Z7%<>%mutate(CNSR_CVCOMP=case_when(CNSR_CVCOMP=="1"~0,CNSR_CVCOM

P=="2"~1,TRUE~NA_real_)) 

 

Z7$CNSR_EXAC_TOTAL<-as.numeric(Z7$CNSR_EXAC_TOTAL) 

Z7%<>%mutate(CNSR_EXAC_TOTAL=case_when(CNSR_EXAC_TOTAL=="1"~0,CNS

R_EXAC_TOTAL=="2"~1,TRUE~NA_real_)) 

 

Z7$CNSR_EXAC_MOD<-as.numeric(Z7$CNSR_EXAC_MOD) 

Z7%<>%mutate(CNSR_EXAC_MOD=case_when(CNSR_EXAC_MOD=="1"~0,CNSR_E

XAC_MOD=="2"~1,TRUE~NA_real_)) 

 

Z7$CNSR_EXAC_SEV<-as.numeric(Z7$CNSR_EXAC_SEV) 

Z7%<>%mutate(CNSR_EXAC_SEV=case_when(CNSR_EXAC_SEV=="1"~0,CNSR_EXA

C_SEV=="2"~1,TRUE~NA_real_)) 

 

coxph(Surv(TIME_ACM,CNSR_ACM)~AGE+SEX+BMI+ARMCD+SMKBLN+ 
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PACK_YRS+FEV1+PREV_ARR+PREV_STROKE+PREV_HF+PREV_HYPERCHOL+PR

EV_HYPERTENS+IHDCAD+PREV_PAD+PREV_DIABETES+ASPIRIN, 

      data=subset(Z7,INTENTION_TO_TREAT=="Y"&BERA=="0"& 

                    

CARBASALATE=="0"&CILOSTAZOL=="0"&CILOGIN=="0"&CLOPIDOGREL=="0"& 

                    DIPYRIDAMOLE=="0"&ASPCLOP=="0"&ASPDIP=="0"&ETHICO=="0"& 

                    ANAGRELIDE=="0"&EPTIFIBATIDE=="0"&FONDAPARINUX=="0"& 

                    

GINTIC=="0"&ICOSAPENT=="0"&LIM=="0"&MESOGLYCAN=="0"&OZ=="0"& 

                    

PRASUGREL=="0"&RESVERATROL=="0"&SARP=="0"&TICAGRELOR=="0"& 

                    

TIC=="0"&TRIFLUSAL=="0"&VOR=="0"))%>%gtsummary::tbl_regression(exp=TRUE) 

 

 

coxph(Surv(ADY_INFLUENZA_FULL,INFLUENZA_STATUS)~AGE+SEX+ARMCD+B

MI+ASPIRIN, 

      data=subset(Z7,INTENTION_TO_TREAT=="Y"&BERA=="0"& 

                    

CARBASALATE=="0"&CILOSTAZOL=="0"&CILOGIN=="0"&CLOPIDOGREL=="0"& 

                    DIPYRIDAMOLE=="0"&ASPCLOP=="0"&ASPDIP=="0"&ETHICO=="0"& 

                    ANAGRELIDE=="0"&EPTIFIBATIDE=="0"&FONDAPARINUX=="0"& 

                    

GINTIC=="0"&ICOSAPENT=="0"&LIM=="0"&MESOGLYCAN=="0"&OZ=="0"& 

                    

PRASUGREL=="0"&RESVERATROL=="0"&SARP=="0"&TICAGRELOR=="0"& 

                    

TIC=="0"&TRIFLUSAL=="0"&VOR=="0"))%>%gtsummary::tbl_regression(exp=TRUE) 

 

 

 

Z7%<>%mutate(TREATMENT_YEARS_1=(Z7$TREATMENT_YEARS)+1) 

Z7%<>%mutate(TREATMENT_YEARS_LOG=log(Z7$TREATMENT_YEARS_1)) 

Z7$TOTAL_MACE[is.na(Z7$TOTAL_MACE)]<-0 
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MACE_RATE<-glm(TOTAL_MACE~AGE+SEX+BMI+ARMCD+SMKBLN+ 

                 PACK_YRS+PREV_ARR+ 

                 PREV_STROKE+PREV_HF+PREV_HYPERCHOL+ 

                 PREV_HYPERTENS+IHDCAD+PREV_PAD+ 

                 

PREV_DIABETES+PREV_EXAC+ASPIRIN+offset(TREATMENT_YEARS_LOG),data=s

ubset(Z7,INTENTION_TO_TREAT=="Y"&BERA=="0"& 

                                                                                           

CARBASALATE=="0"&CILOSTAZOL=="0"&CILOGIN=="0"&CLOPIDOGREL=="0"& 

                                                                                           

DIPYRIDAMOLE=="0"&ASPCLOP=="0"&ASPDIP=="0"&ETHICO=="0"& 

                                                                                           

ANAGRELIDE=="0"&EPTIFIBATIDE=="0"&FONDAPARINUX=="0"& 

                                                                                           

GINTIC=="0"&ICOSAPENT=="0"&LIM=="0"&MESOGLYCAN=="0"&OZ=="0"& 

                                                                                           

PRASUGREL=="0"&RESVERATROL=="0"&SARP=="0"&TICAGRELOR=="0"& 

                                                                                           

TIC=="0"&TRIFLUSAL=="0"&VOR=="0"),family="poisson") 

 

summary(MACE_RATE) 

exp(coef(MACE_RATE)) 

cbind(RR=exp(coef(MACE_RATE))) 

round(cbind(RR=exp(coef(MACE_RATE))),digits=2) 

 

fct_explicit_na(Z7$PREV_PAD,na_level="N") 

Z7%<>%mutate(PREV_PAD=fct_explicit_na(PREV_PAD,na_level="N")) 

fct_explicit_na(Z7$PREV_STROKE,na_level="N") 

Z7%<>%mutate(PREV_STROKE=fct_explicit_na(PREV_STROKE,na_level="N")) 

fct_explicit_na(Z7$IHDCAD,na_level="N") 

Z7%<>%mutate(IHDCAD=fct_explicit_na(IHDCAD,na_level="N")) 

 

Z7_PS<-matchit(ASPIRIN~PREV_PAD+PREV_STROKE+ 

                   IHDCAD,data=subset(Z7,INTENTION_TO_TREAT=="Y"&BERA=="0"& 
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CARBASALATE=="0"&CILOSTAZOL=="0"&CILOGIN=="0"&CLOPIDOGREL=="0"& 

                                           

DIPYRIDAMOLE=="0"&ASPCLOP=="0"&ASPDIP=="0"&ETHICO=="0"& 

                                           

ANAGRELIDE=="0"&EPTIFIBATIDE=="0"&FONDAPARINUX=="0"& 

                                           

GINTIC=="0"&ICOSAPENT=="0"&LIM=="0"&MESOGLYCAN=="0"&OZ=="0"& 

                                           

PRASUGREL=="0"&RESVERATROL=="0"&SARP=="0"&TICAGRELOR=="0"& 

                                           

TIC=="0"&TRIFLUSAL=="0"&VOR=="0"),method="nearest",caliper=0.2,distance="logit") 

summary(Z7_PS,standardize=TRUE) 

Z7_PS$match.matrix 

Z7_PS$discarded 

 

bal.tab(Z7_PS,m.threshold=0.1,un=TRUE) 

bal.tab(Z7_PS,v.threshold=2) 

 

Z7_PS1<-match.data(Z7_PS) 

head(Z7_PS1) 

 

Z7_PS1$CNSR_EXAC_TOTAL<-as.factor(Z7_PS1$CNSR_EXAC_TOTAL) 

Z7_PS1$CNSR_EXAC_MOD<-as.factor(Z7_PS1$CNSR_EXAC_MOD) 

Z7_PS1$CNSR_EXAC_SEV<-as.factor(Z7_PS1$CNSR_EXAC_SEV) 

Z7_PS1$CNSR_ACM<-as.factor(Z7_PS1$CNSR_ACM) 

 

Z7_TABLE<-

tableby(~AGE+SEX+ARMCD+BMI+SMKBLN+PACK_YRS+RACE_CODE+PREV_EXA

C+ 

                    PREV_PNEU+TREATMENT_YEARS+GLUCOSE+PREV_ARR+ 

                    

PREV_STROKE+PREV_HF+PREV_PAD+PREV_DIABETES+PREV_HYPERCHOL+ 

                    PREV_HYPERTENS+FEV1+MODSEVEXAC+MODEXAC+SEVEXAC+ 

                    

CNSR_ACM+CNSR_CVCOMP+CNSR_EXAC_TOTAL+CNSR_EXAC_MOD+ 
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CNSR_EXAC_SEV+ACEI+ARB+NON_SELEC_B_BLOCK+SELEC_B_BLOCK+ 

                    

STATINS+ASPIRIN+CLOPIDOGREL+PREV_MI+PREV_CAD+PREV_ANG+IHDCAD+ 

                    

TOTAL_MACE,data=subset(Z7_PS1,INTENTION_TO_TREAT=="Y"&BERA=="0"& 

                                             

CARBASALATE=="0"&CILOSTAZOL=="0"&CILOGIN=="0"&CLOPIDOGREL=="0"& 

                                             

DIPYRIDAMOLE=="0"&ASPCLOP=="0"&ASPDIP=="0"&ETHICO=="0"& 

                                             

ANAGRELIDE=="0"&EPTIFIBATIDE=="0"&FONDAPARINUX=="0"& 

                                             

GINTIC=="0"&ICOSAPENT=="0"&LIM=="0"&MESOGLYCAN=="0"&OZ=="0"& 

                                             

PRASUGREL=="0"&RESVERATROL=="0"&SARP=="0"&TICAGRELOR=="0"& 

                                             TIC=="0"&TRIFLUSAL=="0"&VOR=="0"))  

 

 

summary(Z7_TABLE,title="Z7_TABLE") 

 

Z7_PS1$CNSR_EXAC_TOTAL<-as.numeric(Z7_PS1$CNSR_EXAC_TOTAL) 

Z7_PS1%<>%mutate(CNSR_EXAC_TOTAL=case_when(CNSR_EXAC_TOTAL=="1"~0,

CNSR_EXAC_TOTAL=="2"~1,TRUE~NA_real_)) 

Z7_PS1$CNSR_EXAC_MOD<-as.numeric(Z7_PS1$CNSR_EXAC_MOD) 

Z7_PS1%<>%mutate(CNSR_EXAC_MOD=case_when(CNSR_EXAC_MOD=="1"~0,CNS

R_EXAC_MOD=="2"~1,TRUE~NA_real_)) 

Z7_PS1$CNSR_EXAC_SEV<-as.numeric(Z7_PS1$CNSR_EXAC_SEV) 

Z7_PS1%<>%mutate(CNSR_EXAC_SEV=case_when(CNSR_EXAC_SEV=="1"~0,CNSR

_EXAC_SEV=="2"~1,TRUE~NA_real_)) 

Z7_PS1$CNSR_ACM<-as.numeric(Z7_PS1$CNSR_ACM) 

Z7_PS1%<>%mutate(CNSR_ACM=case_when(CNSR_ACM=="1"~0,CNSR_ACM=="2"~

1,TRUE~NA_real_)) 

 

coxph(Surv(TIME_ACM,CNSR_ACM)~AGE+SEX+BMI+SMKBLN+PACK_YRS+ARM

CD+ 
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FEV1+PREV_ARR+PREV_HF+PREV_HYPERCHOL+PREV_HYPERTENS+PREV_DIA

BETES+ASPIRIN, 

      data=subset(Z7_PS1,INTENTION_TO_TREAT=="Y"&BERA=="0"& 

                    

CARBASALATE=="0"&CILOSTAZOL=="0"&CILOGIN=="0"&CLOPIDOGREL=="0"& 

                    DIPYRIDAMOLE=="0"&ASPCLOP=="0"&ASPDIP=="0"&ETHICO=="0"& 

                    ANAGRELIDE=="0"&EPTIFIBATIDE=="0"&FONDAPARINUX=="0"& 

                    

GINTIC=="0"&ICOSAPENT=="0"&LIM=="0"&MESOGLYCAN=="0"&OZ=="0"& 

                    

PRASUGREL=="0"&RESVERATROL=="0"&SARP=="0"&TICAGRELOR=="0"& 

                    

TIC=="0"&TRIFLUSAL=="0"&VOR=="0"))%>%gtsummary::tbl_regression(exp=TRUE) 
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Appendix B 

Table 5: QUADAS-2 criteria 

  Quality 

assessment 

score 

1. Study design (cohort or case controlled) /1 

2.  Quality of inclusion criteria for selecting 

representative population and clear disclosure of 

inclusion criteria  

/2 

3. Quality of exclusion criteria for excluding non-

representative participants and disclosure of 

exclusion criteria listed 

/2 

4.  Quality points for cross-sectional matched control 

defined for datasets that reported patient and control 

samples. 2 characteristics=2 

 

OR 

 

Quality points for cohort study of population 

representing based on demographic characteristics 

(age, gender, BMI, disease definition, comorbidities) 

 

/2 

5 CVD clearly defined. Points assigned for how 

defined (diagnostic result, clinical code) and  

transparency in data collection and reporting 

/2 

6 Method for measurement of biomarker and analysis 

method for biomarker level fully disclosed (i.e log, 

mean/median SD/range values) 

 

/2 

7 Quality points for time points of study: cross-

sectional time-point of test identical for all 

participants (1), related to index test if appropriate 

and reported (1). 

 

OR 

Time point for longitudinal study, >=12 months 

FU=2, 6-12 months=1, <6 months =0 

 

/2 

8 Representative sample. Points assigned for 

transparency of sample selection methods and 

applicability of the population representing. E.g. if 

heart failure, only those with severe (NHYA III-IV) 

so not representative of all heart failure patients so 

would lose a point. 

/2 

 Total /15 



227 

 

Appendix C 

 

The table of studies in the systematic review and meta-analysis is too large for an A4 format. 

The table can be found in the S3 file of the published study ‘Role of the IL-33/ST2 axis in 

cardiovascular disease: A systematic review and meta-analysis’.  

URL: (https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259026).
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Appendix D 

Table 6: SUMMIT propensity matched groups 

Variable Aspirin user (n=5038) Aspirin non-user (n=5038) 

Age (mean years) 65.222 64.580 

Sex 3741 (74.3%) male 3678 (73.0%) male 

BMI (mean) 28.500 27.690 

Race 4411 (87.6%) white 3999 (79.4%) white 

Smoking Status 2422 (48.1%) current smoker 2344 (46.5%) current smoker 

Pack Years (smoking, mean) 42.822 37.709 

FEV1% 59.024 58.958 

Previous exacerbations prior 

to study entry 

(0, 1, >=2) 

0 (60.4%) 

1 (24.7%) 

>=2 (14.8%) 

0 (57.9%) 

1 (26.2%) 

>=2 (15.9%) 

Clinical History (Yes)   

Diabetes 1206 (23.9%) 1224 (24.3%) 

Hypercholesterolemia  3164 (62.8%) 2560 (50.8%) 

Hypertension 4386 (87.1%) 4197 (83.3%) 

Heart Disease 2645 (52.5%) 2645 (52.5%) 

Stroke 523 (10.4%) 523 (10.4%) 

HF 1166 (23.3%) 1108 (22.2%) 

Peripheral Artery Disease 1045 (20.7%) 1045 (20.7%) 
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Table 7: IMPACT propensity matched groups 

Variable Aspirin user (n=2037) Aspirin non-user (n=2037) 

Age (mean years) 66.795 65.196 

Sex 1362 (66.9%) male 1362 (66.9%) male 

BMI (mean) 28.002 26.428 

Race 1779 (87.3%) white 1537 (75.5%) white 

Smoking Status 711 (34.9%) current smoker 686 (33.7%) current smoker 

Pack Years (smoking, mean) 49.937 45.686 

FEV1% 45.196 45.727 

Previous exacerbations prior 

to study entry 

(0, 1, >=2) 

0 (0.0%) 

1 (46.5%) 

>=2 (53.4%) 

0 (0.1%) 

1 (44.7%) 

>=2 (55.2%) 

Clinical History (Yes)   

Diabetes 486 (24.1%) 269 (13.3%) 

Hypercholesterolemia  1061 (52.5%) 633 (31.5%) 

Hypertension 1406 (69.3%) 1075 (53.0%) 

Heart Disease 550 (27.0%) 550 (27.0%) 

Arrhythmia 222 (10.9%) 212 (10.4%) 

Stroke 149 (7.3%) 149 (7.3%) 

HF 178 (8.8%) 123 (6.0%) 

Peripheral Artery Disease 113 (5.5%) 113 (5.5%) 
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Appendix E 

Table 8: PRISMA 2009 checklist 
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Appendix F 

 

Figure 20: Bland-Altman plot showing differences between measurements of RvD1 

 

 

Figure 21: Bland-Altman plot showing differences between measurements of Del-1 


